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A new method is proposed for calculation of the dynamic Stark effect in a circularly polarized 

electric field of arbitrary frequency and intensity. The basic equations of the method are presented. 
In the framework of the approach proposed, shifts and splits of energy levels for the He atom in the 
circularly polarized electric field are calculated. 

 

Introduction 
 
The dynamic Stark effect is known to occur as 

atoms and ions are exposed to the effect of an 

alternating electric field. This effect essentially 

consists in the fact that the alternating electric field 
causes a shift and split of atomic and ion energy levels 

and formation of the spectrum of quasiharmonics. 
Besides, resonant population of levels is observed. 
This process can take place even at a very weak electric 
field, if its frequency is close to the frequency of 
some transition. 

It seems interesting to study the dependence of 
the dynamic Stark effect on the frequency and intensity 
of the external electric field. To achieve this task, it 
is necessary to solve a nonstationary Schrödinger 
equation for the system under consideration  
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where H
)

 and ψn are the Hamiltonian of the system 
and the wave function for the nth state of this 
system, respectively. Equation (1) is solved within 
the framework of nonstationary perturbation theory. 

In the time-dependent field the energy of system 
is not preserved. Under certain conditions, namely, 
in the case of a monochromatic external field, we can 
speak about the Stark shift of energy levels. According 
to the Floquet theorem, to find the wave function of 
a system in an external monochromatic field, the 
sought function in the Schrödinger equation (1) can 
be presented in the form1 

 − εψ = ϕ( , ) ( , ),i t
t e tr r  (2) 

where the periodic function ϕ(r,t) = ϕ(r,t + 2π/ω) 
can be expanded in a time Fourier series, so that  
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It can be seen from Eq. (3) that the wave function 
is a superposition of some stationary states with the 
energies ε + kω. This superposition is called a quasi-

energy state, and the parameter ε is called the quasi-
energy of the system.2 The spectrum of ε + kω values 
is referred to as the spectrum of quasiharmonics and 
is the spectrum of states of the new quantum system of 
atom + field or, as it is customarily said, dressed atom. 

The procedure of solving the Eq. (1) significantly 
depends on the field polarization (linear, circular, or 
elliptic), but in any case it faces some problems. 
First, they are problems connected with the need to 
fulfill standard restrictions on the applicability of 
perturbation theory, according to which: 

1) the electric field strength should be relatively 
low, and the perturbation induced by the external 
electric field should be less than the energy deficit 
between the neighboring energy levels, 

2) to consider the resonant and nonresonant 
perturbations, it is necessary to use different 

calculation methods. 
Second, depending on whether the excitation by 

the field is low-frequency or high-frequency, it is also 
necessary to apply different methods for solving the 
problem. 

 

Calculation technique 
 

The case of circular polarization of the electric 
field is the simplest from the viewpoint of theoretical 
investigation of the dynamic Stark effect. If the field 
is polarized circularly, the calculations become much 
simpler, since in this case the spatial and temporal 
variables can be separated. In the system with the 
central or axially symmetric Hamiltonian of the 
unperturbed system, the equation for determination 
of quasistationary states and quasienergies becomes 
much simpler, since nonstationary Schrödinger 

equation (1) is reduced to the stationary one. This 
simplification is performed using the rotating wave 
approximation.3 

Consider the transition to the rotating coordinate 
system. In the circularly polarized electric field 
Schrödinger equation (1) can be written as 
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where 0 ( )H r

)

is the Hamiltonian of the unperturbed 

atom; the operator –eF(x cos ωt ± y sin ωt) describes 
the perturbation caused by the interaction of the 
atom with the electric field having the frequency ω 
and the strength F, + sign corresponds to the 
clockwise polarization of the field, while – is for the 
counterclockwise one. To pass on to the coordinate 
system rotating about the axis Z with the frequency 
ω, introduce the following wave function in it  

 ( , ) exp ( ) ( , ),
z

t i tJ tϕ = ω ψr r

)

 (5) 

where 
z

J
)

 is the z-component of the atomic operator 

of total angular momentum. After substitution of the 
wave function (5) into Eq. (4), we obtain the equation 
of the form 
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As can be seen from Eq. (6), the operator Q
)

 is 

independent of time. Consequently, in the rotating 

wave approximation, we can pass on from 

nonstationary Schrödinger equation (4) to the 

stationary Schrödinger equation of the form  

 ( ) ( ).Qϕ = εϕr r

)

 (7) 

The operator Q
)

 is the operator of quasienergy of the 

atom in the electric field; ε and 

 ( , ) exp ( ) ( )t i tϕ = − ε ϕr r  (8) 

are the quasienergy and the wave function of the 
atom in the electric field in the rotating coordinate 
system. Obviously, ε and ϕ(r,t) can be found, using 
stationary perturbation theory for solution of Eq. (7). 
Solution of the stationary Schrödinger equation is 
much simpler than the nonstationary one, but even 
within stationary perturbation theory some restrictions 
inherent in it still keep in force.  

In the theory of atom/field interactions, numerous 
attempts have been tried to obtain such equations, 
which would allow calculation of shifts and splits of 
atomic energy levels in the field of arbitrary frequency 
and strength. However, these attempts were successful 
only for some particular cases. Equations were obtained 
for calculation of shifts of energy levels of different 
model systems 

4 or for systems in the single- and two-
level approximation.5,6 Such equations were obtained 
for a particle in the short-range potential and for a 
negative ion (see Refs. 7, 8, and references therein). 
In Ref. 9 the general equations were derived for 

calculation of the shift and split of energy levels for 
an atom in an electric field, but these equations are 
applicable only in the case that an isolated atomic level 
is considered  in  the  absence of resonances with the field. 

This paper proposes a new method for studying 
the dynamic Stark effect in a circularly polarized 
electric field of arbitrary strength and frequency. 
Within this method, it is suggested to manage without 

perturbation theory in solving the stationary 

Schrödinger equation (7) in order to avoid problems 
connected with the need to meet the restrictions 

inherent in the perturbation theory. It is proposed to 
determine wave functions and energies of the atom in 
the field that are solutions of stationary Schrödinger 
equation (7) from diagonalization of the operator of 

quasienergy Q
)

. Write this equation once more for 

particular nth states of the atom in the electric field 
with the strength F and frequency ω 
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The wave functions of the operator of quasienergy Q
)

 

will be sought in the form of resolution in terms of the 

eigenfunctions of the operator 0 ( )H r
)

 

 (0)( ) ( ).n kn k

k

Cϕ = ϕ∑r r  (10) 

Since the wave function (10) is the eigenfunction of 

the operator Q
)

, the matrix of energy of the atom in the 

field in this representation is diagonal, that is,  
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mn m n n mn

Q Q=< ϕ ϕ > = ε δr r
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where εn is the quasienergy of the atom in the electric 
field. Therefore, the problem of determining the 

eigenvalues of the operator Q
)

 can be considered as a 

problem of reducing the matrix of this operator to 
the diagonal form in some representation. In particular, 
it may be representation of the unperturbed wave 
functions of the atom or ion as calculated with no 

external electric field applied. The operator Q
)

 is an 

Hermitian self-conjugate operator, so its eigenfunctions 
and eigenvalues can be always found from 

diagonalization of its matrix. In the representation of 
unperturbed wave functions, the matrix elements of 

the quasienergy operator Q
)

 have the form 

 

(0)

(0) (0) (0) (0)( ) ( ) ,

mn n mn

m z n m x n

Q E

J F D

= δ −

− ω < ϕ ϕ > ± < ϕ ϕ >r r

)

 
(12)

 

where (0)
n

E is the energy of the nth state of the atom 

without external electric field; Dx is the õ-component 
of the dipole transition operator. 

Diagonalization of the matrix of quasienergy 
with elements (12) yields a set of quasienergy states, 
that is, wave functions of the system in the field, and 
the spectrum of quasienergies n of states of the atom 

in the field. After diagonalization of the matrix Q
)

, 

we obtain the quasienergies εn and the wave functions 

 − εϕ = ϕ∑ (0)( , ) ( )ni t
n nk k

k

t e C rr  (13) 

for n states of the atom in the external electric field 
of the frequency ω and strength F in the rotating 
coordinate system. To find quasienergies of an atom 
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or ion in the initial coordinate system, it is necessary 
to perform standard averaging of the energy of the 
system in the quasienergy state over the period of 
oscillations. After this averaging, the mean energy of 
the system in the field in the initial coordinate 
system is written in the form 
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It is obvious from Eq. (14) that
n

E is independent of 

time, which coincides with the result obtained in 
Ref. 4.  

The wave functions (0)
n

ϕ and energies (0)
n

E of the 

unperturbed atom or ion are calculated by either the 
Hartree–Fock method or the method of nonorthogonal 
orbitals (in the case that the excited states have 
lower-lying states of the same symmetry). The 
equation for calculation of the matrix elements of the 
dipole moment operator has the form 
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where the dependence on quantum numbers JM is 
taken into account in the 3j-symbols according to  
the Wigner–Eckart theorem. For transitions of 

1 1

2 31 1

N N
l l l l−  type, the reduced matrix elements 

J D J′ ′< γ γ >  are calculated as  

 2 2 3 3( , , ) ,J D J Q JJ n l r n l′ ′ ′ ′< γ γ > = α α < >  (16) 

where ( , , )Q JJ′ ′α α is the factor depending on the 

quantum numbers of the calculated transition, 
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Results and discussion 
 

This paper presents some results obtained for He 
atom in calculating the shifts and splits of the energy 
levels of this atom under the action of a circularly 
polarized electric field of different frequencies and 
the electric field strength. The unperturbed wave 
functions were calculated by the variational method 
with nonorthogonal orbitals, and the radial integrals 
were calculated with the analytical orbitals  
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The matrix of quasienergy (12) was calculated with 

the made allowance for 71 energy levels of He atom, 
and, as a result, 361 magnetic sublevels for He atom 

in the electric field were obtained. All the calculations 
were carried out for the LS-coupled He atom. 

Figure 1 shows the curves describing the shift of 
the levels with J = 0 depending on the electric field 
strength F at the field frequency ω = 100 MHz. Since 
J = 0, these levels only shift, but do not split in the 
electric field. 
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Fig. 1. Relative shift of energy levels with J = 0 for He 
atom as a function of the electric field strength. 
 

As can be seen from Fig. 1, for these levels the 
square Stark effect is observed, and the higher is the 
considered level, the larger is the shift, it experiences 
at the increasing electric field strength.  

Now consider the levels that split in the electric 
field. The plot in Fig. 2 describes the behavior of  
he 1s2p3P1 and 1s2p3P2 levels of He atom depending 
on the electric field strength F at the frequency 
ω = 100 MHz. This excitation is low-frequency  
and nonresonant (the closest resonance is ω = 
= 0.13 ⋅ 105

 MHz). 
As can be seen from Fig. 2, the square Stark 

effect is observed, and no degeneracy in the magnetic 
quantum number M takes place. This result agrees 
with the findings of the perturbation theory. Then, it 
is seen from Fig. 2 that the split of the levels is small 
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(about 10–4 cm–1) even at a very high field strength 
F = 50 kV/cm. The low degree of splitting is 
explained by the fact that these levels are among the 
lowest ones, which are low-sensitive to the effect of 
the electric field.  
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Fig. 2. Split of the 1s2p3P levels of He atom depending  
on the electric field strength, along with the relative shift 
(EF – E0 –169086), in cm–1. 

 

Consider now the behavior of higher energy 
levels, for example, 1s4p1P1 and 1s4d1D2 in the 
electric field with the frequency ω = 0.87 ⋅ 107 MHz. 
This frequency corresponds to the frequency of the 
dipole transition 1s4p1P1 – 1s4d1D2, so this case is 
the  case  of  resonant excitation by the electric field. 
The calculated results are depicted in Fig. 3. It can be 

seen from Fig. 3 that the degree of splitting of the 

energy levels in the field increased as compared with 

the previous result (about 0.5 cm–1
 at F = 50 kV/cm). 

Besides, as in the previous case, the square Stark effect 
with full relief of the degeneracy in the quantum 
number M is observed. It should be noted that, unlike 
perturbation theory, both resonant and nonresonant 
excitations are calculated uniformly through 

diagonalization of the matrix Q
)

. 

Besides, it seems interesting to study how the 

behavior of the energy levels depends on the 
frequency of the external electric field. As an 
example, Fig. 4 depicts the dependence of the 
1s6p1P1 level on the electric field strength F at the 
different frequencies ω. As has already been shown, 
the higher the energy level, the more sensitive to the 
effect of the electric field is it. Therefore, to study 
the behavior of this level, it is sufficient to consider 
the field strength ranging up to 1 kV/cm, rather 
than from 0 to 50 kV/cm, as for lower-lying energy 
levels. As can be seen from the plots depicted, the 

split and shift of magnetic sublevels are quite 
significant (about 0.1 cm–1) even in that weak field. 
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Fig. 3. Relative energy shift of the 1s4p1P1 and 1s4d1D2 
levels of the He atom (EF – E0 – 191446.55901), in cm–1, 
at resonant excitation by the electric field. 

 
Figure 4a–ñ demonstrates the behavior of the 

1s6p1P1 level in the case of nonresonant excitation by 
the electric field. It is seen that the sublevel with 
M = 0 is almost insensitive to variation of the field 
frequency, while the shift of the M = –1 sublevel 
decreases and that of the M = 1 sublevel increases 
with the increasing field frequency. In general, this 
leads to a situation that at the nonresonant excitation 
the degree of splitting of the level decreases with the 
increasing field frequency. 

Figure 4d shows the behavior of this level at 
resonant excitation by the field with 
ω = 0.266 ⋅ 107 MHz. This frequency is equal to the 
frequency of the 1s6p1P1 – 1s6d1D2 dipole transition. 
It is seen from Fig. 4d that the degree of splitting of 
the level decreases (as compared with the previous 
results) for lower field frequencies, but behavior of 
the M = –1 magnetic sublevel is different than that 
in the case of nonresonant excitation. 

It is interesting to note that the regularity is 
observed for all the considered levels that under 
nonresonant excitation by the electric field, the 
sequence order of the magnetic sublevels is arbitrary, 
while at the resonance excitation, the magnetic 
sublevels are ordered by the quantum number M. 

The common analysis of the results calculated 
for He atom reveals some regularities for the dynamic 
Stark effect in this atom. 

1) From analysis of the wave functions it follows 
that as the electric field strength grows, the degree of 
interaction among the energy levels increases, while 
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the growth of the electric field frequency leads to a 
decrease in the mixing of the levels and in the range 
of optical frequencies ∼  108 MHz we deal with almost 
isolated levels. 
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Fig. 4. Behavior of the 1s6p1P1 level of the He atom 
depending on the frequency of the external electric field.  

 
2) Analysis of the plots describing the shift and 

split of the energy levels of the He atom in the electric 

field of different strength and frequency suggests that 
under the action of a circularly polarized electric 
field the square Stark effect with the full relief of 
degeneracy of the energy levels in the magnetic 

quantum number is observed. 
3) The higher the energy level, the large is the 

shift, it experiences in the electric field. The increase 
of the electric field frequency leads to a decrease in 
splitting of an energy level at the same field strength. 

These conclusions agree with the results of 
perturbation theory, what demonstrates once again 
the adequacy of the approach proposed. 

 

Conclusions 
 
As can be seen from the above reasoning, the 

proposed approach to calculation of spectra of atoms 
 

and ions placed in a circularly polarized electric field 
has the following advantages over the methods of 
perturbation theory. 

1) This approach is free of limitations inherent 
in perturbation theory and can be applied to 
calculation of the dynamic Stark effect for any atom 
or ion exposed to a circularly polarized electric field 
of arbitrary strength and frequency. Besides, the cases 
of both resonance and nonresonance excitation are 

calculated by the same equation and do not require 
application of various approximations in contrast to 
the perturbation theory. 

2) It seems to be very important that the 
computational procedure involves many, rather than 
few energy levels for real atoms and ions. Thus, 
within the framework of the approach proposed the 
Stark effect is calculated theoretically in the multi-
level approximation, which allows one to additionally 
estimate the degree of influence of the interaction 
between atomic levels on the effect under study. 
Since the energy levels of the atom in the field are 
very close, the interaction between them should 
necessarily be taken into account. 

3) The proposed approach suits for calculation of 
both low- and high-frequency excitations. 

The method proposed is rather complicated in 
calculations, but the STARKD program package was 
developed for its realization. This software makes the 
calculations much easier.  

As can be seen from the results presented, the 
behavior of spectral lines of atoms and ions in a 
circularly polarized electric field of arbitrary strength 
and frequency can be predicted based on calculations 
within the framework of the method proposed. 
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