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The geometric optics approach is used to analyze propagation of a femtosecond laser pulse in a 
water microdroplet. The dynamics of spatial distribution of light intensity and electron concentration 
over the laser-induced plasma in a microdroplet exposed to a femtosecond laser pulse is investigated. 
The calculations have been carried out with the help of the ray-tracing technique. Shadow face 

reflection and ray interference that appear due to aberrated focusing are taken into account in the 
numerical simulation. The spatial distribution of light intensity obtained for droplets with the size 
larger than 20 µm is close to that calculated by the Lorenz–Mie theory. It is shown that at the pulse 
duration of 45 fs (a Ti:Sapphire laser) and the peak intensity of 1011 W/cm2 an optical breakdown 
occurs in a water microdroplet of 30 µm in radius. 

 

Introduction 
 

The scope of a rapidly developing femtosecond 
nonlinear atmospheric optics involves a wide range of 
problems on the interaction of 20–100 ⋅ 10–15

 s-duration 
laser pulses having the peak power of 1010–1012 W 

with atmospheric constituents.1 Nonlinear optics of 
atmospheric aerosol occupies a significant place 

among these problems. The interaction of a high-power 

laser radiation with aerosol particles may considerably 
affect the phenomenon of laser pulse filamentation and 

generation of supercontinuum, which is now considered 
as a promising source for broadband sensing of the 
atmosphere.2 Aerosol microparticles are not only an 

essential factor affecting propagation of laser pulses in 
atmospheric air, but also an independent object of 
study in atmospheric monitoring. Therefore, the 

interaction of high-power femtosecond laser pulses 

with aerosol particles is too a complicated problem, 
whose solution is now quite urgent. 

Most papers concerning nonlinear optical 
interaction of laser radiation with an aerosol particle 
that were published in the 1980s–1990s considered 

pulses of micro- and nanosecond duration or the quasi-
continuous emission mode.3 In one of the first papers 
dealing with the femtosecond range of pulse duration, 
Zemlyanov and Geints 

4 have calculated the process  
of establishing the whispering gallery modes of the 
light field in a spherical droplet. Boutou and Hill  
in a series of papers5–7

 have studied theoretically  

and experimentally the emission from multiphoton 

processes in an aerosol particle. Fluorescence was 

observed in ethanol and methanol droplets, and white-
light emission was observed in water aerosol droplets 
at laser-induced breakdown inside a particle. The 
spatial distributions of the internal field intensity, 
electron concentration in laser-induced plasma, 
density of fluorescing sources, and the directional 
pattern of the emitted radiation have been calculated. 

In theoretical investigations of the nonstationary 
internal field, various methods of solution of the 

Maxwell equation in a particle are used: finite 
difference method in the (3D+1) space, which is direct 

solution of the initial equations,8 Fourier analysis 

method or, in other words, the Lorenz–Mie method, 
which considers a superposition of Mie solutions  
for all harmonics of the frequency spectrum of the 
laser pulse,9 the method of resolution of the 
electromagnetic field of a spherical particle into 
eigenmodes, which is most efficient in the problems 
of nonlinear scattering by an aerosol particle.4 These 

methods are computationally time consuming, and 
their application to the problems of nonlinear optics 
of atmospheric aerosol is not always justified. 

In this paper, the geometric optics approximation 
is used for analysis of the internal field of a spherical 
particle exposed to a femtosecond laser pulse. 

 

Geometric optics calculation  
of the field inside a particle 

 

The geometric-optics approximation is applicable 
to calculation of the field inside a particle, if the radius 
of the first Fresnel zone determined near the shadow 
surface is much larger than the particle radius R. This 
condition leads to the inequality  

 02R >> λ . (1) 

In the case of a Ti:Sapphire laser (λ0 = 0.8 µm) 
condition (1) is fulfilled for most of the atmospheric 
aerosol droplets. The paraxial estimation of the 

focusing properties of a spherical droplet gives that 
the focal length of its front illuminated surface is 

 drop
1

drop( 1)

n
F R

n
=

−
.  (2) 

For water (refractive index ndrop = 1.33) F1 ≈ 4R, 
and the increase in the intensity due to focusing on 
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the illuminated surface manifests itself partly inside 
the droplet. For the wave reflected from the shadow 
droplet surface, the focal length is  

 drop
2

drop

(2 )

(3 )

n
F R

n

−
=

−
. (3) 

The following inequality is true: F2 < 2R, thus 
indicating a significant increase in the intensity of the 
internal field due to focusing of the radiation reflected 
from the shadow surface of the droplet. 

The geometric optics analysis employs the ray 

tracing method, according to which a uniform grid is 
introduced near the illuminated droplet surface in the 

plane normal to the radiation propagation direction 

and the intensity distribution and the wave front of 
the incident beam are specified on it. A ray with the 
weight m proportional to the intensity of incident 

radiation is emitted from every point of the 

computational grid. The ray is directed normally to the 

wave front at this point. Then the spatial displacement 
and the phase change are considered for each ray 
individually with the following calculation of ray 

reflection or refraction at the interface between media. 
In this paper, we study, in the scalar 

approximation, the incidence of a plane wave, which 
allows us to pass on to the axially symmetric 

consideration. In this case, a uniform (over the radius) 
distribution is specified for the rays with the specific 
weight mp: 

 mp = ph, (4) 

where h is the grid step; p is the distance to the axis 
(impact parameter). The set of rays with the close 
values of the impact parameter [p; p + dp] form a ray 
tube (Fig. 1). In the axially symmetric case, a ray 

beyond the droplet is a side surface of a cylinder with 
the radius p, while inside the droplet it is a side 
surface of a cone, whose radius r(z, p) varies with the 
coordinate z and parametrically depends on p. 
Correspondingly, a ray tube beyond the droplet is a 

ring volume confined between two cylinders with the 
radii differing by dp, while inside the droplet it is a 

volume between two cones with the radii r and r + dr. 
The incidence angle of the ray θ is connected 

with the impact parameter by a simple relationship 
 

 sinp R= θ. (5) 

At refraction or a reflection from the air/water 

interface, the ray weight mp changes according to the 
Fresnel formulas. 

The parts of the ray trajectory inside the droplet 
are calculated analytically. Thus, for the part from the 
entrance into the droplet to the first reflection the 
radial r and the longitudinal z ray coordinates and the 
impact parameter p are related as  

 ( ) [ ] ( ), cot tanr z p p p z= − θ + θ −ψ ,  (6) 

where the refraction ψ and incidence θ angles can be 
uniquely expressed through the parameter p. 

In the process of propagation inside the droplet, 
the area of the cross section of the ray tube changes. 
Since there is no energy exchange between tubes, the 
intensity Iint(z, p) in the pth tube can be found from 
the relationship  

 extint( , ) ( , )d

p p

p

J N

j

j J

I z p r z p r I m

+

=

= ∑ , (7) 

where Iext is the intensity of the incident wave; 
Jp = [p/h] is the number of the ray corresponding to 
the impact parameter p; Np = [dp/h] is the number of 
rays in the pth tube and dr is the width of the ray 

tube inside the droplet (see Fig. 1). As z increases, the 
area of the cross section of the ray tube decreases and 
the intensity Iint(z, p) in it increases.  

In analyzing the intensity distribution inside the 
droplet, it is convenient to introduce a radius-uniform 
grid with the step g in the cross sections for ray tubes. 
In this case, for any coordinate z the thickness of the 

ray tube inside the droplet is assumed fixed and equal 
to the grid step dr = g, where dr >> h. Then for 

calculation of the intensity Iint(z, p), the rays, whose 
radial coordinate falls within the range [r; r + g], are 
summed up. This algorithm in accordance with Eq. (7) 
can be interpreted as a fit of the incident ray tube with 

such an impact parameter [p(r, z); p(r, z) + dp(r, z)] 
that it falls within the grid cell [r; r + g] at the 
distance z chosen. 

 

 
Fig. 1. Ray propagation inside a water droplet. The radiation is incident from left to right. 
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In this paper, we use the ray grid with the step 
h = 10–5

 R and the ray tube grid with the step 
dr = 10–2

 R, which allowed us to sufficiently accurate 
calculate the intensity distribution over the cross sections 
with the spatial resolution of 10–2

 R. Thus, for the 

droplet of R = 30 µm in radius, the error in the 

intensity in  the cross section z = 0 does not exceed 1%. 
The intensity distribution due to contraction of 

ray tubes, that is, focusing by the illuminated droplet 
surface is depicted in Fig. 2a for the central z = 0 cross 
section. The peak intensity due to focusing in this cross 
section Iint(z = 0, r = 0) is 1.6 times higher than that 
of the incident radiation Iext. 

 

 
a 

 
b 

Fig. 2. Intensity distribution (a) and wave front (b) due to 
focusing at the illuminated surface in the central, z = 0, 
cross section of the droplet: calculated wave front ( ) and 
parabolic approximation ( ). 

To determine the phase change in the ray tubes, 
the optical path lp(z) is calculated. The phase change 
in the pth ray tube ϕ(z, p) is determined from the mean 
optical path of the component rays taken with the 
corresponding weights: 

 
0

2
( , ) ( )

p p p p

p p

J N J N

j j j

j J j J

z p m l z m

+ +

= =

πϕ =
λ ∑ ∑ . (8) 

Figure 2b depicts the calculated profile of the wave 
front in the droplet of radius R = 30 µm for the central 
droplet cross section z = 0 along with its approximation 
by the parabolic wave front obtained by the least 
squares method (dashed curve). The radius of curvature 
of the parabolic wave front is ∼  77 µm, while that 
estimated by Eq. (2) is ∼  90 µm. The difference in the 
radii of curvature and the deviation of the real phase 
profile from the parabolic one are consequences of 
aberrations at focusing by a spherical surface. As a 

cross section located farther in the shaded part of the 

sphere is considered, the aberration effects become 

more pronounced. 
The dependence of the radial ray coordinate r on 

the impact parameter p in the plane at the distance 
z = 0.9R from the central cross section is shown in 
Fig. 3. It can be seen that at p ≥ 0.85 there is an 
area, where one value of the coordinate r corresponds 
to two values of the impact parameter p and, 
correspondingly, to two ray tubes. 

 

 
Fig. 3. 

 
In this area, the intensity redistribution is formed 

due to interference of rays after refraction on the 

illuminated droplet surface. The area of the interference 
of the ray tubes at their intersection is shown in 

Fig. 4a. The longitudinal dimension of this area in the 
droplet with the radius of 30 µm is about 10 µm, while 
the lateral dimension is 4 µm. 

At the point of intersection of K ray tubes with the 
impact parameters pk, the intensity is  

 

2

int int

1

( , ) ( , ) exp[ ( , )]
K

k k

k

I z r I z p i z p
=

 
= ϕ 
  
∑ . (9) 

The number of the intersecting ray tubes K 

depends on the coordinate of the point inside the 
droplet (z, r). The impact parameter pkr, at which the 
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derivative dp/dr = 0, corresponds to the caustic, and 
the geometric optics approximation in this area is 
inapplicable to calculation of the intensity. This value 
of pkr corresponds to a wide-aperture angle at 

"rainbow" formation.  
Near the droplet axis, the intensity of the internal 

field Iint achieves the values about 4Iext due to focusing 
by the illuminated surface. In Fig. 4b one can clearly 
see the zone of the enhanced intensity forming a ring 
near the external droplet boundary with the structure 
characteristic of an interference pattern. The external 
droplet boundary in the analyzed surface is shown by 
a dashed line in Fig. 4b. In this area the intensity at 
the interference peak increases by ∼ 20 times as 

compared with the incident wave, and the growth of 
the field at the caustic boundary can be estimated by 
averaging over the area with the characteristic size 

about the wavelength λ0. 
In analysis of femtosecond pulse propagation in 

a microdroplet, we restrict our consideration to single 
reflection from the shadow surface. This approximation 
is valid, if the pulse duration τp is shorter than the 
time τg needed to the light wave to cross the spherical 
droplet: 

 g
0 drop

2R

c n
τ ≤ , (10) 

where ñ0 is the speed of light. 
At the pulse duration τp ∼  τg, its leading edge after 

reflection from the shadow surface is focused inside the 

droplet volume and interferes with the trailing edge. 
For the droplet of 30 µm in radius, the characteristic 
time is τg ≈ 150 fs. Figure 5 shows, as an illustration, 
continuous-tone pattern of the field intensity inside a 
droplet with regard for single reflection from the 
shadow surface for a square-shaped pulse. Dark parts 
correspond to higher intensity. The maximum increase 
in the intensity is achieved at the droplet axis in a 
cylindrical area about 10 µm long with the cross section 
of 3 µm. This area is located about 7 µm far from the 
shadow surface, which agrees with the focal length 
F2 ≈ 12 µm estimated by Eq. (3). The maximum 

increase in the intensity is about 200 times as compared 
to that of the incident wave. This result suggests that 
at propagation of a high-power femtosecond laser pulse 
in this area we should expect an essential manifestation 
of the nonlinear optical effects and pulse self-action. 
 

 

        

  a b 

Fig. 4. Interference area inside the droplet: ray paths inside the droplet that determine the intensity redistribution (a); 
intensity distribution at the distance z = 0.9R from the droplet center (b). 

 

  
 a b 

Fig. 5. Intensity distribution inside the droplet with regard for single reflection from the shadow surface: in the volume (a), 
on the axis (r = 0) (b). 
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Dynamics of the field inside a particle 
 

To consider the dynamics of the intensity at 
propagation of a femtosecond laser pulse inside a 

droplet, we used the values of the phase change ϕ(z, p) 
pre-calculated for every ray tube. Thus, for a Gaussian 
pulse with the input envelope  

 ( )
2

ext 0

L

exp 4ln2
t

I t I

  
 = −  τ   

, (11) 

where τL is the full duration at half maximum, the 
time dependence of the intensity in the pth ray tube 
is determined by the following expression: 

 ( ) ( )
2

int int

L

( , )
, , , exp 4ln2

t z p
I z p t I z p

  − ϕ ω
 = −  τ   

. (12) 

Here ω is the carrier circular frequency; the intensity 
Iint(z, p) is given by Eq. (7). Thus, as the longitudinal 
coordinate z varies in the pth ray tube, the pulse is 
delayed by the radiation propagation time ϕ(z, p)/ω. 

Figure 6 depicts the radiation intensity 

distributions of a Gaussian pulse τL = 45 fs-long for 
some characteristic moments in time. The zero time 
t = 0 is the time, when the peak of the pulse at the 
droplet axis passes through the illuminated surface 
(z = –R). 

At the time t = 130 fs, when the pulse peak is 
roughly at the droplet center z = 0, the intensity 
increases due to radiation focusing at the droplet axis 
(Fig. 6a). During the further propagation, a ring 
interference area is formed, and the increase of the 
intensity at the peaks of the interference pattern 
achieves ∼  20 times (Fig. 6b). At the time t = 270 fs 
the pulse peak reaches the shadow surface at the 
droplet axis (Fig. 6c). As this occurs, the pulse 
trailing edge continues to form the ring interference 
area, and the reflected part of the leading edge is 
focused at the axis 6 µm far from the shadow surface. 
The interference pattern also is formed in the region 
of overlap of the leading and trailing pulse edges. 
For a Gaussian pulse the intensity increase in it is 
much less than that in the focusing area. 

 

 
 

 a b 

 
 

 c     e 

Fig. 6. Intensity distribution of the pulse of τL = 45 fs-duration inside a water droplet at different time t, in fs: 130 (a), 210 (b), 
270 (c), 300 (d), and 330 (e). The pulse is incident from left to right along the arrow. The time is measured from the instant when 
the peak of the pulse at the droplet axis (r = 0) crosses the illuminated surface (z = –R). 
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At the further propagation of the reflected pulse, 
its central, in time, layers reach the area of sharpest 
focusing, and the maximum intensity in this area is 
roughly 100 times as high as the intensity of the 

incident radiation I0 (Fig. 6d). Then (t = 330 fs) pulse 
blooming begins, and the intensity decreases (Fig. 6e). 
The area, where the intensity exceeds that of the 
incident radiation, contracts considerably as compared 
to earlier instants. The intensity in the zone of 
maximum focusing also decreases and roughly 40 times 
exceeds that of the incident radiation at t = 330 fs. 
The spatial blooming of the pulse continues, and at 
t = 360 fs the intensity in the volume droplet does 
not  exceed  the  intensity of  the incident radiation I0. 

The results presented suggest that for the pulses no 
longer in space than the droplet diameter there are two 
zones of a considerable increase in the intensity. 
Manifestation of the nonlinear optical effects and 
formation of the laser-induced plasma are most 

probable in these zones. One zone is the ring interference 
area near the shadow surface of the droplet, where the 
intensity is as high as 20 I0, and the other one is the 
zone of focusing of radiation reflected from the shadow 
surface, where the intensity is roughly as high as 
100 I0. The time dependence of the intensity in these 
zones is almost identical to the time profile of the 
incident pulse. The second zone is formed with some 
lag determined by the time of propagation of the 
reflected pulse. For the considered pulse of τL = 45 fs-
duration and a droplet with the radius of R = 30 µm 
this lag is about 90 fs. 

 

Formation of plasma 
 

Laser-induced electron plasma is generated during 
pulse propagation inside the water droplet. In the 
zones of maximum increase in the intensity, we should 
expect the highest electron concentration. To describe 
formation of the electron plasma, we used a model 
accounting for multiphoton and cascade ionization  
and recombination of plasma.10

 The rate equation 

describing the dynamics of the electron density 
ρ(r, z, t) has the following form: 

 2
casc rec

mp

d d

d dt t

ρ ρ = + η ρ − η ρ 
 

, (13) 

where the first term in the right-hand side of the 
equation describes the multiphoton ionization, while 
the second is for the cascade ionization, and the third 
one describes recombination. 

To take into account multiphoton ionization under 
the exposure to a laser field in water, we use Keldysh 
approximation. For ionization of a molecule with the 
ionization energy ∆E, the needed number of photons 
can be estimated as k = 〈∆E/(hω) + 1〉. For a pulse from 
a Ti:Sapphire laser (λ0 = 0.8 µm) and the water 

molecule with ∆E = 6.5 eV, k = 5. According to this 
approximation, the rate of multiphoton ionization is 
 

 
3 2 2

2
0 0 dropmp
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d 169

k

m e
I
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 ′ρ ω ω   ≈ ×    ′∆ ω επ     h
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exp erf 2 ,
E E

k
 ∆ ∆ × −    ω ω   h h

 (14) 

where m′ is assumed equal to the electron half-mass, 
m′ = me/2; I is the radiation intensity. The rate of 
cascade ionization is determined as  

  
2 2

ecol col
casc 22

e0 0dropcol

1

1

e m
I

c n m E M

 τ ω τη = − 
ε ∆ω τ +   

, (15) 

where τcol = 1 fs is the time of electron–molecule 

collisions; M = 3 ⋅ 10–26
 kg is the mass of a water 

molecule. The coefficient at the term describing 

recombination was assumed constant and equal to 
ηrec = 2 ⋅ 10–9

 cm3/s. The following calculation shows 
that at the time of femtosecond pulse propagation in 
a water microdroplet the effect of recombination on 
the formation of plasma is insignificant. 

The electron density ρ(z, r, t) at a given droplet 
point (z, r) was calculated through solution of 
Eq. (13) by the Runge–Kutta method using 

numerically obtained time dependence of the intensity 
Iint(z, r, t).  

Figure 7 shows the continuous-tone patterns of 
the electron concentration in the central longitudinal 
cross section for a water microdroplet of the radius 
R = 30 µm and the input pulse (11) with the duration 

τL = 45 fs and peak intensity I0 = 3 ⋅ 1011 W/cm2 for 
some characteristic instants. The calculation was 

carried out with the time step ∆t = 1 fs and the 
spatial resolution g = 0.01 R. 

As the pulse penetrates the droplet, the 
probability of ionization is low, and the plasma with 
the concentration no higher than 10–14

 ρ0, where 
ρ0 = 3.34 ⋅ 1022 cm–3 is the equilibrium concentration 
of water molecules, is formed only in the front part 
of the droplet. Then the ionization zone extends, and 
by the time t = 130 fs the electron concentration at 
the droplet center increases up to 10–11

 ρ0 under the 
effect of the growing field (Fig. 7a). The electron 
concentration is accumulated with time and in any 
part of the droplet the peak of the electron density is 
delayed from the peak of the internal field. When the 
interference increase of the intensity near the rear wall 
of the microdroplet starts (t = 210 fs), ionization 
occurs almost in the entire droplet (Fig. 7b). The 
electron concentration in the ring area, where the 
intensity is maximum, is ρmax = 3 ⋅ 1019 cm–3. 

After reflection from the shadow surface, the 
pulse propagates backwards, thus causing the further 
increase of the electron density in the axial zone 
(t = 270 fs, Fig. 7c). The highest electron density is 
achieved in the zone of maximum focusing of the 
reflected radiation at t = 330 fs (Fig. 7d), and for 
the chosen droplet and pulse parameters it is ρmax = 
= 3 ⋅ 1022 cm–3, that is, about 1% of the equilibrium 
concentration of water molecules ρmax ≈ 10–2

 ρ0. Thus, 
at the peak intensity of the input pulse higher than 
I0 = 3 ⋅ 1011 W/cm2, the optical breakdown occurs in 
the droplet.11 
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 a b 

 
 c d 
Fig. 7. Electron plasma density inside a water droplet at propagation of a pulse of τL = 45 fs duration and peak intensity 
I0 = 3⋅1011 W/cm2 at different time t, in fs: 130 (a), 210 (b), 270 (c), and 330 (d). Time is measured from the instant, when 
the pulse peak at the droplet axis (r = 0) penetrates the illuminated surface (z = –R). 

 
Figure 8 depicts the time dependence of the 

electron concentration in the laser-induced plasma at 
the axis in the zone of maximum focusing of the 

reflected radiation at the distance ∆z = 11 µm from 
the shadow surface. The nonuniform increase of the 
plasma concentration is explained by the fact that 

strong ionization first occurs at the forward 

propagation of the pulse, and its following drastic 
increase is caused by the backward propagation of the 
central, in time, layers of the pulse after reflection 
from the shadow surface. 

Once the pulse has been terminated, the electron 
concentration decreases tenfold for the time of about 
10 ps. Thus, recombination of the plasma for the time 
of propagation of a femtosecond laser pulse inside the 
microdroplet is insignificant. 

 
Fig. 8. Electron plasma density at the droplet axis (r = 0) 
at the distance z = 18 µm as a function of time in the case 
of propagation of a pulse with the duration τL = 45 fs and 
peak intensity I0 = 3 ⋅ 1011 W/cm2. 
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Conclusions 
 
1) Based on the ray tracing method, the approach 

has been developed to numerical investigation of the 
light field distribution inside an aerosol droplet 
exposed to a femtosecond laser pulse. The method is 
applicable to droplets, whose radii meet the condition 
R >> 2λ0. The pulse duration τp in this case is bounded 
above by the inequality 

 p
0 drop

2R

c n
τ < . 

The method accounts for the effect of radiation 

focusing by the illuminated droplet surface, field 
interference during the forward propagation of the 
pulse through the droplet and at reflection from the 
shadow surface. 

2) Using a droplet of 30 µm in radius as an 

example, we have shown that for radiation with the 
wavelength of 0.8 µm and pulse duration of 45 fs, the 
field intensity inside the droplet increases roughly 
fourfold due to focusing by the illuminated surface, 20-
fold at the interference maxima in the ring zone near 

the shadow surface, and 100-fold at focusing after 

reflection from the shadow surface. The estimates of the 

maximum increase in the intensity obtained for water 

droplets with the diameter larger than 20 µm agree 

with the results calculated by the Lorenz–Mie theory. 
3) It has been established that at the peak 

intensity of the incident pulse of a Ti:Sapphire laser 
I0 = 3 ⋅ 1011

 W/cm2, a zone of optical breakdown arises 

in an aerosol droplet due to multiphoton and cascade 

ionization. The maximum electron concentration in this 
zone achieves ρmax = 3 ⋅ 1022 cm–3, which is in a good 
agreement with the experimental data.11  

The results obtained from analysis of the space-
time distribution of the light filed intensity and the 
electron concentration in a water droplet can be used  
 

to study nonlinear optical processes of interaction of 
a femtosecond laser pulse with water-droplet aerosol. 
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