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The integral resolution of the Knox–Thompson method is investigated in its classical 
formulation, when  image spectra are shifted by some fixed value of the spatial scale. In this case, 
the integral resolution of the method can be determined as an integrated form of its optical transfer 
function at the current spatial scale. The integral resolution of the system “turbulent atmosphere – 
telescope” is shown to decrease monotonically for this method, as the fixed shift of the spatial scale 
increases. It is noted that the integral resolution of the Knox–Thompson method is always lower 
than that of the Labeyrie method. The classical Knox–Thompson method has a higher integral 
resolution at shifts of speckle-interferograms within a speckle, while the extended Knox–Thompson 
method better processes the well advanced speckle-structure of an image for large shifts of speckle-
interferograms. 

 

Fried 

1,2 has considered the integral resolution of 
the optical system "turbulent atmosphere–telescope" 
for the cases of an average image and a series of 
short-exposure images at their processing by the 
Labeyrie method. This issue has received further 
development in my earlier paper, 

3 which proposed an 
original approach to estimation of the integral 
resolution of different methods for postdetector 
processing of an image of an incoherently illuminated 
object observed by a telescopic optical system 
through the turbulent atmosphere. In Ref. 3 the 
following image processing methods were treated: the 

method of average image registration, Labeyrie 
method, Knox–Thompson method, and method of 
triple correlation of the image intensity. The Knox–
Thompson method was studied in its extended 
version as a result of bispectral transformation of the 
correlation function of the image intensity.  

In this paper, somewhat different version of 
determination of the integral resolution for the 
Knox–Thompson method is formulated. The case is 
treated, when image spectra are shifted to some fixed 
value of the spatial scale (∆p ≠ 0), and the method 
performance characteristic is related to the optical 
transfer function (OTF) of the system through the 
ordinary Fourier transformation. In this situation, the 
integral resolution of the method can be determined 
as the integrated form of its optical transfer function 
at the current spatial scale p.  

The optical transfer function of the optical 
system "turbulent atmosphere–telescope" can be 
written in the form 

4:  
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where U(ρρρρ) is the complex amplitude of the field at 

the point ρρρρ of the receiving aperture  generated by a 

point incoherent source positioned in the object 

space; K(ρρρρ) is the pupil function  of the receiving 
aperture; p is the spatial scale.  

For the extended Knox–Thompson method 
studied in Ref. 3, the following is true: 
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where I(ρρρρ) = U(ρρρρ) U∗ (ρρρρ) is the intensity of the 

optical field at the point ρρρρ of the receiving aperture 
generated by a point incoherent source positioned in 
the object space. Thus, bispectral transformation of 
the correlation function of the image intensity is 

performed: ( ) ( )I I′ ′′ρ ρρ ρρ ρρ ρ .  

If the classical Knox–Thompson method is 
considered, then 
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and the performance characteristic equal to  
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is related to the optical transfer function through the 
ordinary Fourier transformation. Estimate the 
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potentialities of these two versions of the method for 
an object observed through the turbulent atmosphere 
from the viewpoint of integral resolution.  

Calculate the integral resolution ℜ KT(∆p) for the 
classical formulation of the Knox–Thompson method 
defined as follows:  
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where τKT(p, p + ∆p) is the OTF of the system 
"turbulent atmosphere–telescope" for the Knox–

Thompson method 

4; ( ) 2 2

00M K R= π  is the 

normalization factor 

4; K0 is the amplitude 
transmittance of the telescope at the optical axis of 
the system; R is the radius of the receiving aperture; 
k = 2π/λ, λ is the wavelength of optical radiation in 
vacuum; F is the focal length of the receiving lens. 
Take the transmission function of the optical 
receiving system as a gaussoid 

3,4:  
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It follows from the definitions of the Labeyrie 
methods 

1,4 and the classical formulation of Knox–
Thompson method (1) that the integral resolutions of 
these methods are related as follows: 

 ( )ℜ ∆ = ≡ ℜKT LM0 ,p  (2)  

where ℜ LM is the integral resolution of the Labeyrie 

method. 
The equation for the integral resolution of the 

Knox–Thompson method can be obtained by 
substituting the OTF of the system "turbulent 

atmosphere–telescope" ( )τ + ∆KT ,p p p  in the form 

found in Ref. 4: 
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into Eq. (1). Here D(ρρρρ) is the spatial structural 
function of fluctuations of the complex phase of a 
plane optical wave.  

For further considerations, the integral 
representation for this function will be taken in the 
form  
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is the spectrum of fluctuations of the turbulent 

atmosphere permittivity; 2
Cε  is the structural 

parameter of the atmospheric turbulence; κ0 = 2π/L0, 
L0 is the outer scale of atmospheric turbulence; 
κm = 5.92/l0, l0 is the inner scale of atmospheric 
turbulence; x  is the effective thickness of the 
optically active layer of atmospheric turbulence. 

4 The 
asymptotic relationships for D(ρρρρ) have the following 
form: 
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is the coherence length of a plane wave under the 
condition that the coherence length of the plane 
optical wave ρ

c
 is less than the inner scale of 

atmospheric turbulence; 
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condition that the coherence length of the plane 
optical wave ρ
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atmospheric turbulence;  
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is the variance of fluctuations of the complex phase 
of the plane wave;  
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Let us analyze asymptotically Eq. (3) for the 
integral resolution of the Knox–Thompson method. 
As commonly accepted, 

3,4 consider two cases: (1) a 
slightly distorted image (R < ρc) and (2) well 
advanced speckle-structure of the image (R > ρc).  

For the case R < ρc, in integral equation (3) 
expand the factor containing the structure functions 
of fluctuations of the complex phase of the optical 
wave into a series and remain two first terms: 
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Further calculations of the asymptotic equations 
require a concrete definition of the relationships 
between R, ∆p, and the scales of atmospheric 
turbulence (l0, L0). Consider the case of small 
receiving apertures (R < l0), that is, when the radius 
of the receiving aperture is less than the inner scale 
of atmospheric turbulence: 
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where ℜ 0 = 4π
2
kR

2
/F 

2
 is the integral resolution of the 

optical system in vacuum. 

3 In this case the range of 
spatial scales ∆p < l0 describes almost whole 
meaningful range of variability of the function 
ℜ KT(∆p). The ranges l0 < ∆p < L0 and ∆p > L0 can 
be omitted, since they have no practical meaning. As 
follows from Eq. (2), this asymptotics for the 
function ℜ KT(∆p) at ∆p = 0 coincides with that for ℜ LM  
at R < l0 obtained earlier in Ref. 3:  
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It follows from the above equations that in this 
case the ratio of the integral resolution of the Knox–
Thompson method to that of the Labeyrie method is 
always less than unity:  

 
( )   ℜ ∆  ∆ ∆

 ≅ − − ≤   ℜ ρ     

22
KT

2

LM m

exp 1 1.
8

p p

R

p
  (4)  

In the case when the size of the receiving 
aperture falls between the inner and outer scales of 

atmospheric turbulence l0 < R < L0, the range of the 
spatial scales ∆p < R covers almost whole meaningful 
variability range of the function ℜ KT(∆p):  
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The ranges R < ∆p < L0 and ∆p > L0 can be 
omitted, since in this case they are practically 
meaningless. This asymptotics for ℜ KT(∆p) at ∆p = 0 
coincides with the asymptotics for ℜ LM at 
l0 < R < L0{ρc} obtained in Ref. 3:  
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In this case, the ratio of the integral resolutions 
of the Knox–Thompson and  Labeyrie methods has 
the following form:  
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Let us restrict our consideration to analysis of 
the integral resolution of the methods for 
postdetector image processing in only the most-used 
case of receiving apertures smaller than the outer 
scale of atmospheric turbulence. The range of huge 
receiving apertures (R > L0) is beyond the scope of 
this consideration.  

It turns out that as the shift of the spatial scales 
∆p increases, the integral resolution of the Knox–
Thompson method ℜ KT(∆p) decreases. In addition, as 
it follows from Eqs. (4) and (5), the integral 
resolution of the Knox–Thompson method is always 
lower than that of the Labeyrie method.  

At strong image distortion (advanced speckle-
structure) R > ρc there are two integration domains, 
which contribute considerably to the integrand of 
Eq. (2). In these domains, expand the factor 
including the structural functions of fluctuations of 
the complex phase of the optical wave into a series 
and remain the first two (zero-order and first-order) 
terms: 
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For small receiving apertures R < l0, then 
ρc < l0 since R > ρc, and, consequently, ρc = ρm. In 
this case, for the spatial scales ∆p < l0 
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The integral resolution of the Labeyrie method 
for this case has the form (this asymptotics was not 
obtained in Ref. 3, because the case R < l0 was not 
considered): 
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For the intermediate size of the receiving 
aperture l0 < R < L0 and ∆p < R this range covers 
almost whole practically meaningful variability range 
of the function. Assume, for certainty, that ρc > l0, 
that is, ρc = ρ0. Then the following equation can be 
obtained:  
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The integral resolution of the Labeyrie method 
for this case has the form 
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which is almost identical to the result obtained in 
Ref. 3:  
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Insignificant discrepancies in the coefficients are 
explained by differences in the applied asymptotic 
equations for approximation of the structural 
functions of fluctuations of the optical wave complex 
phase by parabolas.  

The ratio of the integral resolutions of the 
Knox–Thompson and Labeyrie methods for the 
strongly distorted image can be written as follows: 
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It turns out that at the advanced speckle-
structure of the image the ratio of the integral 
resolution of the Knox–Thompson method to that of 
the Labeyrie method is also less than unity. Thus, it 
can be concluded that the integral resolution of the 
Knox–Thompson method is always lower than that 
of the Labeyrie method.  

In conclusion, we give comparative estimates of 
the integral resolution of different versions of the 
Knox–Thompson method at postdetector image 
processing for an arbitrarily large telescope (R → ∞) 
at infinite value of the outer scale of atmospheric 
turbulence (L0 → ∞). It can be shown that the 
integral resolution of the Knox–Thompson method is 
characterized by the following limit values.  

a) Classic Knox–Thompson method: 
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where  
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ℜ LE and τLE(p) are, respectively, the integral 
resolution and OTF of the telescopic system  in the 
turbulent atmosphere at observation of the average 
image 

3,4; Γ(11/5) = 1.10.  
b) Extended Knox–Thompson method (data 

from Ref. 3):  

( )
∞ ∞

→ ∞ → ∞
−∞ −∞

ℜ = τ ≅∫ ∫ ∫ ∫
2

KT KT1 2 1 22
lim lim d d ,
R R

k

F
p p p p  

 LE LE2 lim 1.41 lim .
R R→ ∞ → ∞

≅ ℜ = ℜ   (7) 

Comparison of Eqs. (6) and (7) shows that  

 

( ) −
→ ∞

→ ∞

ℜ ∆  ⋅ ∆≅ − = ℜ ρ 

 ∆= − 
ρ 

6 5 2KT

2
KT 0

2

2

0

lim
4 2

exp
lim 22

1.23 exp .
2

R

R

p

p

p

  

This means that the classic Knox–Thompson method 
based on the ordinary Fourier transformation has a  
 

somewhat higher integral resolution at ∆p < ρ0, that 
is, at shifts of speckle-interferograms within a 
speckle. At ∆p > ρ0 the pattern is quite opposite: the 
extended Knox–Thompson method (bispectral 
Fourier transformation) has an obvious advantage 
over the classic method.  

Consequently, it can be concluded that 
advantages of the bispectral Fourier transformation 
over the ordinary Fourier transformation show 
themselves in  better processing of the well advanced 
speckle-structure of an image for large shifts of 
speckle-interferograms.  
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