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The problem on linear scattering of a train of femtosecond laser pulses by a weakly absorbing 

spherical particle is solved based on the analytical solution of the Maxwell equations derived through 
representation of light fields as a series expansion in terms of natural electromagnetic modes of a 
dielectric sphere. The evolution of the optical field in the particle as it is exposed to a single pulse or 
a train of laser pulses is analyzed comparatively. It is found that when the particle is exposed to a 
series of femtosecond laser pulses, the evolution of the particle’s internal field and its intensity varies 
depending on the gap between the pulses. This effect is shown to be connected with the excitation of 
natural electromagnetic modes (whispering gallery modes) in the particle with the resonance 
frequencies falling within the spectrum of the initial laser pulse. There exists an optimal gap between 
the pulses, at which the intensity of the internal optical field additionally increases in the zone of its 
maximum. The value of this gap is inversely proportional to the relative frequency mismatch between 
the natural modes excited and the central frequency of the incident radiation. 

 
One of the features of the femtosecond-duration 

laser radiation is high temporal coherence in a train of 
pulses at the repetitively pulsed operation of a laser 
source. This may lead to specific effects of interaction 
between a train of such pulses and a nonlinear medium. 
In particular, this feature forms the foundation for 
the well known method of coherent light scattering 
spectroscopy.1 Within the framework of this method, 
medium excitation and sensing are performed by short 

light pulses, and the spectroscopic information in this 
case is in the shape of the pulsed response from a 

medium. Use of this method for a microvolume of, for 
example, a spherical microparticle may have some 
peculiarities as compared to the case of a bulk medium. 
This is connected both with focusing of the internal 
optical field by the particle-to-medium interface and 

with the so-called resonance effect manifesting itself in 

excitation of long-lived electromagnetic oscillation 
modes (whispering gallery modes2) in a particle-
microcavity. These effects were analyzed, in 
particular, in our earlier papers.2,3 

In this connection, it seems interesting to consider 
linear scattering of a series of femtosecond laser 
pulses by transparent dielectric microspheres from the 
viewpoint of determining the regularities in the value 
and evolution of the intensity of the internal optical 
field at the varying gap between the pulses in a train. 

To consider the problem of diffraction of a series 
of ultrashort laser pulses at a spherical particle, we 
used the theoretical approach2,4

 that is now actively 
developed in the laser optics. To study the evolution 
of optical fields, it is proposed here to search for the 
solution of inhomogeneous Maxwell equations as a 
series in terms of eigenfunctions of the linear problem 

of stationary scattering (resonance modes of a dielectric 

sphere). In this case, the spatial and temporal 
dependence of the optical fields is factorized so that 
the information about the evolution of the scattered 
field fully transforms to the coefficients of the series, 
for which the system of differential equations is 

written. If a particular profile of the initial pulse is 
specified, then this system of equations can be solved 
numerically or analytically. 

Following this technique, let us expand the 

electric E(r; t) and magnetic H(r; t) field strength 
inside the particle over the system of eigenfunctions 

of a spherical resonator E
TE,TH

ïð (r), H
TE,TH

ïð (r) with the 
natural frequencies ωïð and damping coefficients Γïð 
that describe the spatial profile of the fields of natural 
oscillation modes with TE- and TH-polarization5,6: 
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where εà is the permittivity of the particulate matter; 
Àïð, Âïð are the time-dependent coefficients. 
Hereinafter the complex representation of the optical 
fields is considered. 

The corresponding system of differential equations 
for the expansion coefficients has the form 

4: 
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where the right-hand sides  
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are represented by Fourier integrals of the spectral 
function of the initial pulse G(ω – ω0) and some 

coefficient K
n

ïð(ω; ωïð) that accounts for the degree of 
excitation of the internal field mode (with the indices 
np) by the corresponding mode (n) of the external 
field: 
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Here E0 is the strength of the electric field of the 
incident wave with the central frequency ω0; Rn =  

2 1
;

( 1)

+=
+

n n
i

n n
 k = ω/c; kïð = ωïð/c; à0 is the particle 

radius; na is the refractive index of the particulate 
matter; Va is the particle volume; ñïð are the 
normalization coefficients 

4; ψn(z) are the Riccati–
Bessel spherical functions; c is the speed of light in 
vacuum. Further, for simplicity, we restrict our 

consideration  to  only  ÒÅ-modes of the optical field. 
The particular solution of the inhomogeneous 

equation (1), representing oscillations under the 
effect of the “external” force, can be written as  
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where 
2 21ω = ω − Γ ωnp np np np

)
 is the frequency of 

natural oscillation for  the mode with  regard for loss. 
For further analysis, specify the temporal 

dependence of the radiation incident on the particle 
as a series (train) of Np equidistant pulses with a 
Gaussian time profile: 
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repetition interval; t0, tp are the time parameters. The 
Fourier spectrum of this radiation is described by the 
following function: 
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describes the spectral profile of the train as a whole 
with the half-width ∆ωð = 4π/tp. 

Consider the integrals (2). The calculations show 

that in the most cases the coefficient K
n

ïð(ω; ωïð) can 
be factored out of the integral sign at some value of 
the frequency ω′ by applying the corresponding mean-
value theorem, that is, 
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In the general case, this frequency ω′ is determined 
from a particular frequency dependence of the 

coefficient K
n

ïð(ω; ωïð). However, because of the 
exponential limitation of the spectrum of the initial 
radiation the point ω′ falls within the spectral profile 
G0(ω – ω0). 

Figure 1 depicts the frequency dependence of the 
normalized factor  

 
2
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for different combinations of the mode indices at 
incidence of a single pulse on a water droplet. For 
illustration, it also shows the spectral profile G0(ω – 
– ω0). The set of natural modes in Fig. 1 is different 
because of different widths of the spectral profile of 
the initial laser radiation. 

It can be seen from Fig. 1 that at tp = 10 fs the 

behavior of the coefficient n
npK  is rather complicated 

and characterized by fast change of its value in the 
region of high frequencies, while for longer pulses 
the dependence is already smooth. However, in both 
of the cases, variations of the mean value of the 
studied function for different natural modes within 
the spectral profile of the radiation are small (Table), 
and, consequently, approximation of the integral (2) 
by Eq. (7) is quite correct. 
 



984   Atmos. Oceanic Opt.  /December  2003/  Vol. 16,  No. 12 A.A. Zemlyanov et al. 
 

 

20 40 60 80 100 120 14

0

1

2

3

4

5

 
à 

72 74 76 78 80 82 84

0

1

2

3

4

5

 
b 

 

Fig. 1. Factor n
npK (ω; ωïð) as a function of the parameter x = 

= ωa0/c for the natural modes at incidence of a single pulse 
(λ = 0.8 µm) with the duration tp = 10 (a) and 100 fs (b) on 

a water droplet with the radius a0 = 10 µm. Vertical lines show 

the positions of the resonance mode frequency on the abscissa. 
 

Table  

Pulse 
duration, 

fs 

Mode 
index 

Variability  
range of 
n
npK  ⋅ 104, m 

Mean value 
of n

npK  ⋅ 104, 

m 

“Mean” 
frequency 
ω′ ⋅ 10–15, 

Hz 

10 
TE56,1 
TE85,3 
TÍ120,4 

1.21 ⋅ 10–2
 – 5.12

1.21 ⋅ 10–2
 – 2.46

1.80 ⋅ 10–3
 – 0.93

2.56 
1.23 
0.47 

2.70 
3.15 
3.66 

100 
TE90,1 
TE85,3 
TE87,4 

5.73 ⋅ 10–3
 – 0.16

1.21 ⋅ 10–2
 – 2.46

1.13 ⋅ 10–2
 – 0.16

0.08 
1.23 
0.08 

2.46 
2.45 
2.43 

 

After substituting Eq. (7) into Eq. (4) and 
integration, we obtain 
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Here 0∆ω = ω − ωnp np
)

; ϕ
j
ïð = ωïð tj; erf(z) is the error 

function. We have neglected the second integral in 
Eq. (4) because it is small due to the factor 
G0(∆ωnp + 2ω0 + iΓnp). In Eq. (8) it is convenient to 
change the variables: τ = t/tp; τ0 = t0/tp; γnp = 
= Γnp/∆ωp ≡ (1/4π) ⋅ (tp/tnp); tnp = ωnp/Γnp is the 
characteristic lifetime of a natural mode; ∆ωnp = 

= ∆ωnp/∆ωp; sp = T/tp is the pulse period-to-pulse 
duration ratio. Then, finally, we can write: 
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Analysis of the equation obtained shows that, 
structurally, it consists of several factors: the harmonic 
part with the frequency of a natural mode, the 
envelope of the spectral profile of the initial train of 
pulses that accounts for the shift of the natural mode 
frequency from the center of the spectrum, and the 

sum of contributions from individual pulses in the 
train. The contribution to the resulting time 

dependence of the coefficient Anp from each pulse, in 

its turn, has its own phase ϕ
j
ïð, exponentially damping 

part, and the function describing the initial increase 
of the mode amplitude. Obviously, the main difference 
in the repetitively pulsed excitation of the internal 
field mode from its excitation by a single pulse is in 
the phase relation between the individual pulses in the 
train. Consider this relation in a more detail. 

Write the phase ϕ
j
ïð in new variables: 

 p4 ( 1) .j
np np j sϕ = π∆ω −   (10) 

At ϕ
j
ïð = 2πl, where l is the integer number, each new 

pulse in the train will come in phase with the field 
inside the particle that is generated by the previous 
pulses. Thus, the fields are added in-phase, and the 
total amplitude increases as compared to the case of a 
single pulse, and the smaller is the mode damping Γnp, 
the more significant is this increase. Equation (10) 

imposes a condition on the gap between the pulses, at 
which this effect is maximum: 

 
1

p 2 ,nps

−
= ∆ω   (11) 

from this it follows that the larger the frequency 
mismatch between the natural mode and the central 
frequency of the incident radiation, the smaller should 
be the pulse ratio. Thus, for example, for efficient 
excitation of the mode with the frequency ωnp lying 
at the edge of the spectral profile of the initial radiation 
(  1)∆ω ≈np , a droplet should be exposed to a train of 
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pulses with the gap sp ≈ 0.5, that is, the partial time 
overlap of the pulses is needed. On the contrary, at a 

resonance excitation of the mode ( ∆ωnp ≈ Γnp
2

/ 

/(ω0∆ωp) << 1), because of the natural damping of the 
mode, the effect of phasing of the pulses in the train 
almost vanishes. 

It should be noted that, from the viewpoint of 
spectral analysis of signals, Eq. (11) has quite a clear 
interpretation. Indeed, if this condition imposed on 
the pulse ratio is fulfilled, then the train spectrum 
includes a component with the relative mismatch 
from the central frequency ∆ωnp  (Ref. 7). This spectral 

component resonantly excites the particle natural 
mode under consideration, which leads to the increase 
in the intensity of the entire optical field. 

As an illustration of this conclusion, Figs. 2a –4a 

depict the time dependence of the relative intensity 
 

 ( )* 2
0( ; ) ( ; ) ( ; )B t t t E= ⋅r E r E r% %  

of the internal optical field within a water droplet in 
the zone of its absolute maximum Bm (shadow 
hemisphere) as the droplet is exposed to the train  
of six 100-fs pulses with the different pulse ratio. 
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Fig. 2. Time dependence of the relative intensity Bm of the 
internal optical field within a water droplet (à0 = 10 µm) 
exposed to a train of six pulses with λ = 0.8 µm, tp = 100 fs, 
and the pulse ratio sp = 5 (a); the spectral profile of the 
train of pulses with the parameters corresponding to Fig. 2a 

vs. relative frequency ∆ω  = (ω – ω0)/ω0 (solid line), and the 

function Iδ(ω) (dashed line) in arbitrary units (b). 
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Fig. 3. The same as in Fig. 2a but at sp = 10. 
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Fig. 4. The same as in Fig. 2a but at sp = 20. 

 

Figures 2b–4b show, in arbitrary units, the spectral 
profile of the train at these values of the pulse ratio 
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and the function ( )*( ) ( ; ) ( ; )Iδ δ δω = ω ⋅ ωE r E r , where 

( ; )δ ωE r  is the so-called spectral response of the 

droplet.3 These calculations were carried out by the 
technique described in Refs. 4 and 8 and involving 
the use of the Fourier method in combination with the 
theory of linear light scattering. 

It is clearly seen from Figs. 2–4 that in some cases 
the fields from individual pulses add in-phase in the 
particle. This is especially true, when the local spectral 
maxima in the train spectrum coincide with the strong 
resonance modes of the droplet. Thus, for example, at 
sp = 10 and 20, when the condition (11) is fulfilled, 
we can see an increase in the field intensity in the gap 

between pulses due to excitation of the natural mode 

lying just near the central frequency TE85,3. At the same 

time, at sp = 5 this mode is excited inefficiently. 
Thus, the main difference of the repetitive 

scattering of pulses by a spherical microparticle from 
scattering by a single pulse consists in the possibility 
of some phasing of individual pulses in the train, when 
the whispering gallery modes falling within the 

spectral profile of the train are excited resonantly. In 
this case, the larger is the frequency mismatch between 
the natural mode and the central frequency of the 

incident radiation, the shorter should be the gap 

between the pulses. 
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