920 Atmos. Oceanic Opt. /November 2003/ Vol. 16, No. 11

A.V. Nikitin

Symmetrized form of kinetic energy operator of pentatomic
molecules with three identical atoms in internal coordinates

A.V. Nikitin

Institute of Atmospheric Optics,
Siberian Branch of the Russian Academy of Sciences, Tomsk

Received July 15, 2003

A symmetrized form of the vibrational kinetic energy for pentatomic molecules with three
identical atoms in internal coordinates is presented. This form allows application of the Wigner—
Eckart theorem, which can considerably facilitate calculation of the matrix elements.

Introduction

The total kinetic energy operator is transformed
by the totally symmetric representation. In many cases
the study of the symmetry properties of the kinetic
energy operator is restricted to only this statement.
Nevertheless, in the case that wave functions are
presented as a sum of a large number of terms,
representation of the kinetic energy operator in the
symmetrized form allows some optimization of
calculation of matrix elements. It should be noted
that sophistication of the kinetic energy operator
symmetrization strongly depends on the used internal
coordinates.'™ We specify the internal coordinates
by four vectors ry, ry, r3, r4, each being the linear
combination of radius vectors of a pentatomic
molecule in some coordinate system.! Permutation of
three vectors ry, r3 and r; can be reduced to
permutation of equivalent atoms. As internal
coordinates, we use four separations r{, #y, 73, 74,
three angles between the bonds ¢, ¢13, g14, and two
torsion angles ty3, to4.

Transformation of torsion coordinates
at (23) and (34) permutations

Figure 1 demonstrates transformation of torsion
coordinates at (23)I permutations. The inversion I is
needed to keep the right orientation of the coordinate
axes. From the Figure we can obtain the transformation
rules presented in the second row of the Table.
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Fig. 1. Transformation of the coordinate system at (23)I
permutation, where [ is inversion.
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By similar reasoning, we can obtain the
transformation rules for the torsion coordinates at the
(34)I permutation, which are also presented in the
Table. The transformation rules for the torsion
coordinates at other permutations can be derived from
those for (23)I and (34)I. Transformations of the
torsion coordinates and their derivatives are
summarized in the Table.

Construction of symmetrized functions

Using the Table, we can show that for any
function f() it is possible to construct three functions
of two torsion angles ¢3 and ¢, transformed according to
the irreducible representations E and Ay. In the
particular case f(t) = t, the function A, is zero:

E (t3,t4) = t3) +f(tg) =2f(t3 ~t)],
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Eb(t3!t4) = ﬁl:f(t‘i) —f(—t3):|,
At tp) = %m@) () + (45 +2)].

It is also possible to construct the following symmetrized
functions of the first and second derivatives with
respect to the torsion coordinates:
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As a symmetrized functions for g, we use the
standard symmetrized functions:

E,[1@)] = (21 ~ @) ~(q0)]
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Aff@q)] = %[ﬂ@) () + DT,

E,[fpr(ap] =
= %U(QZ)IC(%) + (g1 (qp) =2 (q3)f (q0) ],
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Ey[f(apf(q)] =
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Similar symmetrized functions can be used for the
coordinates 7; and masses m;.

Symmetrization of vibrational
kinetic energy

Represent the total vibrational kinetic energy as
a sum
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Each of seven terms (H1QQ, HZQQ, H?Q, aer,

HIT, HIT, HIT) is transformed according to the

representation Ay, which can be readily shown using
the transformation rules for the coordinates and
derivatives at the (23)I and (34)I permutations. We
use the following definition for bound operators>:
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In some cases, of interest is decomposition into

the irreducible Q and T parts. For H1QQ, no

transformation is needed:
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Represent the QT part of the vibrational kinetic
energy as the sum

E
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Represent the TT part of the vibrational kinetic
energy as the sums:
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