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A numerical model of the laser beam propagation through the turbulent jet from an aero-
engine has been developed based on the Monte Carlo method. The model describes the features 
observed experimentally that could not be explained by the standard model of a turbulent layer. 
Among those there is such as the strong dependence on the radiation wavelength and spatial 
anisotropy of statistical characteristics of the distorted beam. Comparison of the results of computer 
experiments with the data obtained in the field experiments indicates the correctness of the model 
and computational algorithms developed. With the allowance made for inevitable measurement 
errors, there is a good agreement between almost all statistical characteristics of the distorted laser 
beams obtained in different configurations of the field and imitative experiments. 

 

Introduction 
 

Studies of the spatial characteristics of laser 

radiation having passed through the zone of strong 
turbulence, such as the jet from a turbojet engine are 
urgent both for the development of theoretical models 
of the influence exerted by the atmosphere on laser 
radiation and for practical applications. The skill of 
correctly predicting the characteristics of a distorted 
laser beam allows one to assess and optimize the 

conditions for efficient operation of laser information 
systems under noisy conditions. 

For solution of such problems at the stage of a 

system design, it is important to have a mathematical 
model adequately describing the laser beam propagation 

through a turbulent medium. The development of such 
a numerical model permitting imitation of anticipated 
experimental situations was just the goal of this study. 

This study consisted of three main stages:  
– field experiment on laser beam propagation 

through the jet from a turbojet engine;  
– development of a numerical model of the laser 

beam propagation; 
– imitative numerical experiment on verification 

of the model developed through comparison of the 
results of the field and computer experiments. 

 

1. Field experiment 
 

In the field experiment, we kept in mind that 
the primary goal of this study was developing the 
mathematical model. In this connection, instantaneous 
images of laser beams were recorded in the digital 
form. This allowed application of a data processing 
procedure in both real and computer experiments, if 
numerical simulation is performed by the Monte Carlo 
method. Thus, laser beams with the homogeneous 

intensity distribution and the plane wave front were 
formed at the entrance into the jet, because such beams 
are realized in practice in efficient laser systems and 
they are characterized by the well known coherence 

function used in analysis of statistical characteristics 
of the distorted radiation. 

The optical layout of the experiment and the results 
obtained have been described thoroughly elsewhere.1,2 
Therefore, here we briefly remind only the most 
important details. The aero-engine jet was illuminated 

by the pulsed laser radiation simultaneously at two 
wavelengths (0.53 and 1.06 µm) at the distance of 
∼  0.5 m from the nozzle section at the angles of 90 and 
45° to the jet axis (the radiation path length in the 

turbulent zone was respectively 0.8 and 1.4 m). The 
beam diameters were 10 and 30 mm, and the pulse 

duration did not exceed 50 ns. In every measurement 
cycle, up to 1500 instantaneous intensity distributions 
of  the  distorted  beam were recorded in the far zone. 

In the experiment it was found that under the  
jet effect the angular divergence of the beam with 

λ = 1.06 µm increased roughly by 5 to 10 times, while 
that of the beam with λ = 0.53 µm by 20–30 times. 
In all experimental situations the angular divergence 
of the beams at λ = 0.53 µm two to three times exceeded 
that of the radiation at λ = 1.06 µm, which could not 
be explained within the framework of the standard 
model of a turbulent layer. In addition, azimuth 

asymmetry of the angular intensity distributions of 
laser beams was observed in the experiment. 

The experimentally measured variance of random 
angular displacements of the beam has the same 
peculiarities, as the average angular distribution of 
the distorted radiation, namely, strong wavelength 
dependence and azimuth asymmetry. 

The analysis1,2 showed that the experimentally 
measured wavelength dependences of the average 

angular characteristics of the laser beam distorted by 
the jet agree well with the theoretical model of a 
randomly inhomogeneous medium, in which the spectrum 

of refractive index inhomogeneities is described by the 
combination of the ordinary Karman spectral 
function with the extra multiscale function increasing 

the contribution of high-frequency components in the 

region of spatial frequencies ≥ 103
 m–1:  
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where px and py are the components of the spatial 
frequency vector; p2 = px

2
 + py

2
; Cn

2
 is the structure 

characteristic of the refractive index of the turbulent 
medium; L0x and L0y are the outer scales of 
turbulence in the horizontal (along the jet) and vertical 
(normal to the jet) axis directions, respectively; B 

and Ls are the numerical coefficient and the scale for 
the extra high-frequency spectral function found 
through fitting to the experimental data. 

Based on the experimental data, the following 
estimates were obtained for parameters of the spectral 
function (1) [Refs. 1, 2]: 

 Cn
2
 = (1.5 ± 0.2) ⋅ 10–9 m–2/3; 

 L0x ≈ 0.35 m and L0y ≈ 0.7 m, B ∼  10 and Ls ∼  1 mm. 
 

2. Mathematical model  
of laser beam propagation 

 

The general scheme of the mathematical model 
of laser beam propagation across the jet is as follows: 
an undistorted laser beam with the preset parameters 
crosses a thin randomly inhomogeneous phase screen 
that models a turbulent medium layer and then 
propagates in free space. The beam path length in the 
jet in the experiment was about 1 m, and the 
radiation scintillation index at the exit from the jet 
β0

2
 did not exceed 0.15, that is, the condition β0

2
 << 1 

was fulfilled. Thus, the turbulent jet was modeled by 
a single random phase screen.3 This imitative 
experiment was repeated many times with statistically 
independent phase screens. 

The main factors determining the efficiency of 
the model under development are the choice of the 
method for formation of the phase screen providing 
for an adequate effect of inhomogeneities with both 
high and low spatial frequencies on the laser beam 
and the choice of the efficient method for calculation 
of the beam propagation in the free space that allows 
repeating the experiment for the short time and 
obtaining statistically significant results. 

Having known the two-dimensional spatial 
spectrum (1), we can readily obtain4

 the spectrum of 
randomly inhomogeneous phase change acquired by 
the laser beam as it crosses the turbulent jet  

 Φs(p) = 2πHK2Ôn(p), 

where K = 2π/λ; H is the length of the turbulent 
zone along the beam trajectory. The randomly 
inhomogeneous field of the phase itself S(x, y) can 
be obtained by the spectral sampling method through 
summation of the Fourier series with the random 
coefficients5 by the following equation: 

 S(x, y) = Re 
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where N is the total number of summed harmonics; 
an,m and bn,m are the pairs of real random values 
obeying normal distribution with the zero mean and 
variance equal to unity: 

 <an,m> = <bn,m> = 0; <an,m
2

> = <bn,m
2

> = 1;  

L is the linear size of the screen determining the 
minimum spatial frequency present in the sum of 
harmonics, and the grid step in the frequency region is 

 ∆p = 2π/L; pn = n∆p, and pm = m∆p. 

The imaginary part of this series gives yet another 
independent random realization of the phase screen. 

Solving this problem, we have to determine the 
number of summed harmonics sufficient for simulation 
of the screen. As known,6 the screen size should exceed 

the outer scale of turbulence, that is, L ≥ L0x,0y, then 
the number of harmonics should be about N = 
= max(L0x,0y)/h, where h is the minimum size of 
inhomogeneities in the phase screen, which should be 
taken into account in calculations. From the form of 
Eq. (1) it follows only that h < Ls. To determine the 
particular value, we have to compare the experimental 
and calculated data on intensity fluctuations of the 
distorted laser beam. The results of such analysis are 
shown in Fig. 1, which depicts the photos of some 
single realizations of the far-field images of the 
distorted laser beam. 

Figure 1 demonstrates clear dependence of the 
calculated speckle structure in the beam cross section 
on the step of the computational grid in the plane of 
the randomly inhomogeneous phase screen. The grid 
step needed for correct simulation of the beam 
propagation was chosen based on the degree of 
similarity of the fluctuation characteristics: 

 h ∼  0.2Ls for λ = 1.06 µm and h ∼  0.15Ls 

 for λ = 0.53 µm. 

Since L ∼  1 m and Ls ∼  1 mm, it can easily be seen 
that the number of harmonics needed, N ∼  104

 × 104, 
turns out to be catastrophically large even when 
using Fast Fourier Transform (FFT). However, we 
can use the fact that the laser beam diameter is much 
smaller than the outer scales of turbulence and 
simulate the turbulent layer by two successive random 
phase screens S1(x, y) and S2(x, y) generated as 

refractive index inhomogeneities with the size, 
respectively, smaller and larger than the beam diameter 
D. Then the screen S1(x) is represented by the series 
of the form (2), where L = LD ≈ (2–3)D, and for 

calculation of the filtering function determining the 
series coefficients we can use only a part of the 
spectrum (1) with the frequencies higher than ðD = 
= 2π/D, that is, 
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Fig. 1. Realizations of the far-field images of the distorted laser beam obtained in the real and computer experiments at 
different steps of the computational grid in the plane of a randomly inhomogeneous phase screen. 
 

In the experiment the maximum value is 
D = 30 mm; therefore, for calculation of such a screen 
it is sufficient to use N = 512 harmonics. The phase 
was calculated by use of the FFT procedure. For this 
purpose, the Fourier series was reduced to the form 
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where δ = LD/N is the step of the computational 
grid on the phase screen; k = 1, 2, …, N and 
j = 1, 2, …, N. 

The rest part of the spectrum Φ2(p) = Φ(p) – 
– Φ1(p) was used for calculation of the screen 
S2(x, y) by direct summation of low-frequency 
harmonics, and the series of the form (2) stopped at 
the harmonics with the maximum spatial frequency 
∼  1/D (the number of harmonics turns out equal to 
∼  L/D). In this case, the spatial frequencies of 
harmonics forming the screens S1(x, y) and S2(x, y) 
almost do not overlap and the screens prove to be 
uncorrelated,5 which allows them to be calculated 
independently. The exact number of low-frequency 
harmonics is determined by comparing the analytical 
approximation of the structure function of a random 
phase corresponding to the determined spectrum (1) 
with the calculated structure function of the sum of 
random screens S1(x, y) + S2(x, y). Figure 2 shows 
the results of such a comparison. 

It can be seen that to take into account the 
influence of large-scale inhomogeneities on the 

characteristics of laser beams in the low-frequency 
screen, the number of harmonics should be rather 
large (about 100). Nevertheless, this method is not 
extremely time-consuming in computation of the 
phase screen. 

 
 

Fig. 2. Structure function of phase at different number of 
low-frequency harmonics taken into account in calculating 
the phase screen (spatial frequencies from 2π/L to 2πN/L). 
Cn

2
 = 1.4 ⋅ 10–9 m–2/3, L0x, L0y = 0.7 m, l0 

= 3 mm, H = 
= 1.5 m; R is cross coordinate: theoretical structure function 
for the Karman spectrum (curve 1); N = 100 (2); 10 (3);  
2 (4); and structure function of the screen S1(r) (5). 

 

Consider the algorithm for numerical simulation 
of propagation of the laser beam distorted by the 
turbulent jet.  

Usually, in problems of this kind, the propagation 
of a laser beam through the free space is calculated 
through solving the wave equation in the parabolic 
approximation.5,6 For this purpose, the complex 
amplitude of the laser beam is transformed by applying 
the Fourier transform: direct in the initial plane of 
the beam path and inverse at the end of the path, 
that is, in the observation plane. However, in our 
case for simulation of a narrow laser beam propagation 
it  is  possible  to  use  the Huygens–Fresnel integral. 

If the complex amplitude of the beam just 
behind the phase screen has the form  

 U(x, y, z) = U0(x, y, z) exp[iS(x, y)], 

then, according to the Huygens–Fresnel principle, 
the field amplitude in the plane with the coordinate 
z′ can be found from the integral relationship: 
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where qx = kx′/(z′ – z) and qy = ky′/(z′– z). 
As can be seen from this relationship, the field 

amplitude in the observation plane can be considered 
as Fourier transform of the expression in square 

brackets, and the variables qx and qy in this case play 
the role of spatial frequencies. To pass on to the 
coordinates of the observation plane in the final 
equation, the Fourier transform arguments qx and qy 
should be modified appropriately. Thus, when this 
method is used, the FFT procedure should be applied 
only once in the calculation. 

Application of the FFT procedure imposes 

restrictions on the acceptable variations of the phase 
in the integrand within the step of the computational 
grid. These restrictions are determined by the 
condition (xj+1 – xj)ψ′(xj, y) < π (Nyquist condition 

6), 
where ψ′(xj, y) is the partial derivative of the function 
 

 ψ(x, y) = S(x, y) + π (x2 + y2)/λ(z′ – z). 

in terms of x. 
Hence, it follows that the simulated path length 

should exceed some minimum value: 

 z′ – z ≥ 2D(xj+1 – xj)/λ. 

In our case (z′ – z)min ∼  10 m. Note for a comparison 
that in the case of simulation by the method of 
solution of the parabolic equation with application of 
the FFT the opposite restriction takes place 

6: 

 z′ – z ≤ 2L(xj+1 – xj)/λ, 

which complicates somewhat the simulation of laser 
beam propagation to long distances. This served as an 
additional argument in favor of the simulation 
algorithm using the Huygens–Fresnel integral. 

 

3. Results of numerical experiment 
 

The model software was developed in Fortran-90. 
In addition to the procedures for calculation of single 
realizations of the complex amplitude of the distorted 
laser beam field at the given path length it includes 
the programs for calculating the radiation intensity 
distributions in the observation plane. Also it enables 
determination of the intensity distribution averaged 
over the ensemble of realizations, as well as the 

intensity fluctuations at every point of the beam 
cross section and the centroid of the intensity 
distribution for every realization. These parameters 
are the main characteristics of laser beams distorted 
by a turbulent medium, which are of interest for 
many practical applications. 

As was already noted, the field experiment was 
conducted in such a way that the same programs 
were used to obtain these characteristics from the 
experimental beam images. This allowed direct 

comparison of the results of field and computer 
experiments and verification of the mathematical 
model developed. Some examples of the average 
intensity distributions in the far zone of the beam 
(angular distributions) are depicted in Fig. 3, from 
which we can see rather good agreement between the 
experimental results and that of computer simulations. 

The computer experiment (Fig. 3b) reflects the 
experimentally observed strong wavelength dependence 
of the angular width of the intensity distribution 
only in the case, when the spectrum of inhomogeneities 

of the random phase screen is complemented with 
high-frequency components  [second term  in Eq. (1)]. 
 

 
a 
 

 
b 

 

Fig. 3. Example of average angular intensity distribution in 
the far zone: laser beam 10 mm in diameter crosses the 
turbulent jet at the angle of 45°, λ = 1.06 µm (a) and 
0.53 µm (b): field experiment (curve 1); computer 
experiment with the use of the Karman spectrum (2); 
computer experiment with the use of the Karman spectrum 
and an additional high-frequency function (3). 

 
The influence of high-frequency spectral 

components on the intensity fluctuations is illustrated 
in Fig. 4, which shows some examples of the 
distribution of the index of intensity fluctuations 
(scintillation index) over the cross section of a 
distorted beam. 
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Comparison of angular 1/e level halfwidth θθθθx and θθθθó, variance of the beam centroid wandering σσσσx and σσσσó,  
and the scintillation index at the beam axis ββββ2 = [<I

2>– <I>2]/<I>2 obtained in the experiment and on a computer 

Angle of the jet intersection, ϕ 

90° (Í = 0.8 m) 45° (Í = 1.4 m) 
Beam diameter, mm 

10 30 10 30 
λ, µm 

Beam  
parameter 

experiment computer experiment computer experiment computer experiment computer 
θx µrad 145 ± 20 180 140 ± 20 165 225 ± 30 253 210 ± 30 265 
θy µrad 220 ± 30 241 205 ± 30 235 320 ± 40 345 310 ± 40 360 
σx µrad 85 ± 10 103 50 ± 5 53 130 ± 15 132 85 ± 10 77 
σy µrad 130 ± 15 143 80 ± 10 79 160 ± 15 197 115 ± 10 102 

1.06 

β2  2.1 ± 0.2 2 2 ± 0.2 1.8 2.7 ± 0.2 2.2 2.2 ± 0.2 1.6 
θx µrad 420 ± 50 390 415 ± 50 405 560 ± 70 600 530 ± 70 660 
θy µrad 505 ± 60 460 470 ± 60 525 750 ± 90 715 725 ± 90 730 
σx µrad 175 ± 20 178 115 ± 5 94 245 ± 25 235 175 ± 20 157 
σy µrad 195 ± 20 200 135 ± 5 140 295 ± 30 350 220 ± 20 250 

0.53 

β2  1.9 ± 0.2 1.7 1.8 ± 0.2 1.5 1.5 ± 0.2 1.5 1.5 ± 0.2 1.5 
 

 
Fig. 4. Examples of the distributions of the scintillation 
index β2

 = [<I2> – <I>2]/<I>2 over the cross section of a 
distorted 10-mm diameter beam, λ = 1.06 µm, the beam 
propagates at the angle of 45° with respect to the jet: field 
experiment (curve 1); computer experiment with the use of 
the Karman spectrum (curve 2); computer experiment with 
the use of the combined spectrum (1) (curve 3). 

 
The Table summarizes the results of a comparison 

between the statistical characteristics of distorted 
beams obtained for all experimental situations in the 
field and computer experiments. It can be noted that 
within the data spread in field experiment a good 
agreement is observed between the data. 

Thus, detailed comparison of the results of 
statistical processing of images of distorted laser 
beams obtained experimentally and in computer 
simulations proves the reliability of the developed 
numerical model of the laser beam propagation 
through the aero-engine turbulent jet and its 
adequacy to the process simulated. 

 

Conclusion 
 

Thus, based on the Monte Carlo method we have 
developed a numerical model that describes the 
experimentally observed features, such as strong 
wavelength dependence and spatial anisotropy of the 
statistical characteristics of the distorted beam, 
which were not explained within the standard model 
of a turbulent layer. 

For a beam with a wide spectrum, the random 
screen was simulated through its division into two 
screens: high-frequency one (with the frequencies 
higher than 2π/D) and low-frequency one (with the 
frequencies lower than 2π/D). Both of the screens 
were formed by the spectral sampling method 
traditional for the optics of turbulent atmosphere in 
the form of Fourier series with random amplitudes of 
spatial harmonics, which allows application of the 
FFT procedure. The process of beam propagation 
behind the phase screen is simulated based on the 
Huygens–Fresnel principle with application of the 
FFT, which shortens the computational procedure as 
compared to the traditional method for solution of 
the parabolic equation.  

For the geometrical configurations realized in the 
experiments, a cycle of computer simulations was 
conducted, and the data of field experiments and 
computer simulations were processed by the same 
technique. The comparison of the results demonstrates 
correctness of the computational techniques and 
algorithms put in the foundation of the mathematical 
model. With regard for inevitable measurement errors, 
almost all statistical characteristics of the distorted 
laser beams obtained in different configurations of 
the field and computer experiments are in a good 
agreement. 
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