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Studying the ozone layer is an important part of investigation of the Earth's atmosphere 
because of the high significance of ozone for life and temperature conditions on our planet. The 
results concerning simulation of the ozone layer and the Antarctic ozone hole with neural networks 
using satellite data are presented. 

 
Multidimensional, nonlinear, dynamic (non-

equilibrium) atmospheric processes are known to be 
extremely complicated for applying analytical 
descriptions to them. Methods of numerical simulation 
often prove efficient in such cases. However, 
traditional simulation methods have some fundamental 
limitations. These have been revealed in Ref. 1, where 
the general abstract characteristic of the perturbation 
theory was obtained. It follows, from this character- 
ristic, that variation of the initial and/or boundary 
conditions in the process of verification of a model 
is insufficient for simulation (control) of complex 

systems and processes. In Ref. 1 stochastization of 
any processes starting from the second approximation 

is proved analytically. This means that the correct 
operation with the atmospheric models considered is 
possible only within the first approximation. 
Adaptive systems and systems (in particular, neural 
networks with independent adaptation) developed for 
mapping the information organization of a brain and 
hierarchic, non-equilibrium natural systems are just 
the approach that allows one to hold within the 

framework of the first approximation. 
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The efficiency of neural networks for solution of 
complicated nonlinear problems is justified 

theoretically in Ref. 3, where it is shown that it is 
possible to obtain arbitrarily accurate approximation 
of any continuous function of many variables using 
the standard (for neural networks) operations such as 
addition and multiplication by a number, superposition 
of functions, linear functions, as well as one arbitrary 
continuous linear function of one variable. This 
means that to obtain the needed result, the only 
required property of the neuron activation function is 
its nonlinearity [see Eq. (1)]. 

The use of neural networks (and, in a more 
general case, adaptive networks and systems) allows 
us to remove the most complicated part, namely, 
formalization of a problem and to construct the 
mathematical representation through learning of a 
neural network using experimental data. In many 
cases, this approach significantly speeds up and 
facilitates this stage of investigations. 

It should be noted that construction of compli- 
cated, dynamic, hierarchic models is an extremely 
difficult problem when using traditional simulation 
methods. However, current methods of neuro-
informatics allow us to overcome this barrier and to 
develop nonlinear integral adaptive models of high 
complexity taking into account numerous mutually 
related parameters. One of the advantages of such 
models is the possibility of evaluating the significance 
of input parameters for obtaining the expert 

judgments mentioned above. This circumstance yields 
new knowledge of the importance of different factors 
in the formation and following dynamics of the studied 
phenomena and processes. In addition to a more 
complete insight into the nature of an object under 

study, we get the possibility of efficiently simplifying 
models for saving computer resources and more rapid 
obtaining the simulated results and expert judgments. 

Development of the concept of self-adaptation 
networks and systems2 generalizing the capabilities 
of classic neural networks and having some non-
traditional capabilities on construction of adaptive, 
dynamic systems with a search behavior allowed us 
to pass on to the study of new classes of models that 
caused serous problems in the past. In particular, the 
algorithms constructed according to its requirements 

4 
provide for processing of space-time patterns with a 
complex continuous structure. Self-adaptation neuro-
networks4 can reproduce various, in particular, 
hierarchic structures of systems with synchronous and 
asynchronous functioning, evolving at infinitely long 
periods, and form various types of learning estimates 
of constructed models, including distributed ones.5 
Thus, the use of self-adaptation neuro-networks gives 
a powerful apparatus for simulation and check of 
various hypotheses in atmospheric physics. 

One of the simple versions of the neuro-network 
learning algorithm of the type considered looks like 
the following.4 

Let neuron functioning in a neuro-network be 
described by the equation

 arctan , ,i i i j ij i

j

x Aα = ρ ρ = α +∑  (1) 
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where Ai are external input signals; αj are input 
signals from other neurons; xij are weights of 
interneuron connections.

The goal function, which is used for evaluation 
of learning (adaptation) success, is specified as: 

 ( )* 21

2
i i

i

H = α − α∑ , (2) 

where 
*

iα are the needed values of αi. Other possibilities 

obviously exist as well. 
The process of random search yields a series of 

{ρi} values, which meet the condition of improvement 
of the estimating function. This is the time series ρt, 
whose behavior is to be predicted (ρt is the value of 
ρi at some time).  

Let the time series generated by some model be 

t t tρ = δ + ε , where εt is generated by a random non-

autocorrelated process with the zero mathematical 
expectation and finite variance, and δt can be 
generated either by a deterministic function or a 
random process, or by their combination. 

The tendency of a dynamic series can be calculated 
and analyzed through exponential smoothing of the 
series. This process is based on calculation of 
exponential means. Exponential smoothing is described 
by the recursion formula St = νρt + βSt–1, where St is 
the exponential mean at the time t; ν is the smoothing 
parameter, ν = const, 0 < ν < 1; β = 1 – ν. Another 
way is the use of the time series ρt: 
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where N is the number of terms in the series; S0 is 
the parameter characterizing the initial conditions for 
first application of the formula at t = 1. Since β < 1, 
β 

N → 0 at N → ∞, and
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Thus, St is the weighted sum of all terms in the 
series. 

Let the series be generated by the model 

1t taρ = + ε , where a1 = const, εt is the random non-

autocorrelated deviation or noise with the zero mean 
and the variance σ2. 

Apply the exponential smoothing procedure to 
it. Then 
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Find the mathematical expectation M(St) = 
= M(ρt) = a1 and variance 
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Since 0 < ν < 1, D(St) < D(ρt) = σ2. Thus, the 
exponential mean St has the same mathematical 
expectation as the series ρ, but its variance is 
smaller. At a high value of ν, the variance of the 
exponential mean only slightly differs from the 
variance of the series ρ. 

To apply the exponential mean to short-term 
prediction, we use the series generated by the model 

1,t t taρ = + ε , where a1,t is the mean level of the series  

variable in time; εt is the random non-autocorrelated 
deviation with zero mathematical expectation and the 
variance σ2. The prediction model has the form   

ρ̂τ(t) = â1,t, where ρ̂τ(t) is the prediction obtained at 

the time t for τ time units (steps) in advance; â1,t is the 
estimate of a1,t. The exponential mean St serves an 

estimate for the model parameter a1,t:  â1,t = St. All 
the properties of the exponential mean are, at the same 
time, the properties of the prediction model. If St–1 is 
the prediction for one step in advance, then (ρt – St–1) 
is an error of this prediction, while the new prediction 
St follows from correcting the previous prediction 
with the made allowance for the error. 

 

Prediction of the annual mean total 
ozone content (TOC)  

 

Based on the neuro-network models described, we 
have performed some studies aimed at the development 
of adaptive computer models of the ozone layer 

dynamics. At this stage of our investigation, our task 
was not a detailed reconstruction of the ozone 
fluctuations, since the emphasis was on testing the 
simulation apparatus and procedure with the allowance 
for features of the object under study. The task of the 
neural network was learning to catch the general 
regularities in the ozone variation with a preset 

resolution in space and time. The capability of a neural 
network  to  learn  in  the  supervisor mode was used. 

For predicting, we took the annual mean TOC 
in Arosa, Switzerland (9°40′ E, 46°45′ N). The 

corresponding data are plotted in Ref. 6. 
Figure 1 depicts the annual mean TOC in Arosa. 

The neural network used for learning the period from 
1929 to 1981. The prediction was made for the test 
period from 1982 to 1989. The learning sample 
involved 45 TOC values, and the test included  
8 values. The model was developed based on the 
neural network consisting of seven neurons. The 
prediction quality turned out rather high. The 
correlation coefficient between the preset and 
predicted curves was R = 0.93. 
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Fig. 1. Annual mean TOC for the period from 1982 to 1989 
predicted based on the learning sample from 1929 to 1981. 
 

In Fig. 1, the curve TOC shows real data on 
measurement of ozone content in stratosphere. The 
curve “prediction” shows results of neuro-network 

model operation: to the left from vertical dashed line 
there is learning of neuro-network, to the right – TOC 
prediction by neuro-network. 

The results obtained showed the possibility of 
constructing local prediction models based on neural 
networks under conditions of deficient information on 
the atmospheric processes.  

As can be seen from Fig. 1, the task formulated 
for the experiments described has been successfully 
achieved. Further improvement of the prediction calls 
for additional information to be introduced into the 
model. Presumably, consideration of the solar activity, 
anthropogenic factor, and atmospheric turbulence, in 
particular, circumpolar vortices, can markedly improve 
the accuracy of prediction.  

 

Study of the Antarctic ozone hole
 
The phenomenon of the ozone hole consists in 

the steady TOC decrease in the near-polar zone in 
September–October, as well as later spring peaking, 
whose intensity, as well as TOC in other months of 
the 1980s, only slightly differs from the mean 

“climatic” values of the previous years. There exist two 
hypotheses of the ozone hole formation: anthropogenic 
photochemical and meteorological. 

A circumpolar vortex that forms every year after 
the March equinox signalizes the beginning of 
Antarctic winter. It is a circulating mass of very cold 
stagnant air confined within a ring of western winds. 
This extreme weather phenomenon arises because of 
the unique geographic conditions of the Antarctic 
surrounded by oceans and devoid of massifs, which 
could create a more complex air circulation system. 
The vortex destructs only when the stratospheric 
temperature increases, that is, roughly a month 
before the equinox.  

Thus, circulation vortex exists during 8–9 months 
in a year, since the end of March till the beginning 
of December. In summer (in December) at the 
altitudes corresponding to the pressure of 100 and 
50 hPa the temperature in the Antarctic is roughly 
40°C higher than in winter. Moreover, the temperature 
gradient along a meridian alternates: it becomes 
opposite to that in winter. This means that the winds 
alternate the direction from western to eastern, that 

is, the circumpolar vortex in summer is eastern unlike 
the western one in winter. However, there is one 
more very important principle difference between the 
winter and summer vortices. It is that the summer 
eastern vortex is weak, and therefore it does not 
prevent from air masses coming from the mid-
latitudes to the pole.7 

The relation of the ozone hole to the circumpolar 
vortex was studied by many scientists from different 
countries both experimentally and theoretically with 
the use of various models. The idea of this relation is 
obvious and very simple: the presence of a vortex 
(whirlpool) around the pole prevents from coming of 
ozone-rich air from the mid-latitudes into the vortex. 
Thus, on the one hand, ozone is not produced under 
the exposure to the solar radiation during the long 
polar night, and, on the other hand, it is destructed 
due to the presence of chlorine components 

(admixtures). Measurements showed that in the areas 
with the decreased ozone content, the amount of 
active ClÎ is 10–500 times higher than under normal 
conditions (with no ozone holes) and as compared to 
the mid-latitudes. Likely, just ClÎ is the main cause 
of the ozone hole, and the presence of ClO in the 
stratosphere is the result of the human activity. The 
circumpolar vortex only forms the conditions favoring 
ozone depletion, namely, the presence of small 
particles of polar stratospheric clouds. Formation of 
stratospheric clouds depends, first, on the stratospheric 
temperature at the given place. They are formed in 
winter, when the stratospheric air over the Antarctic 
is very cold because of the absence of solar irradiation.  

When the spring comes, the sun rises higher 
above the horizon, and the Antarctic stratosphere 
warms up. Under the effect of heat and sunlight, 
polar clouds disappear and active nitrogen compounds 
released at melting and evaporation of rest crystals 
intervene in the atmospheric chemistry. In addition, 
ozone is transferred into the ozone hole from the 
near-polar latitudes. 

Formation of the ozone hole is usually associated 
with the Antarctic circumpolar vortex – a steady 
cyclonic circulation in the lower stratosphere, which 
is over the polar region for the whole Antarctic winter 
and spring.  

As known, air inside this vortex moves, in the 
first approximation, along closed trajectories around 
the South Pole.  

More detailed investigation of air mass motion in 
the atmosphere is presented in Ref. 8, and ozone 
serves an indicator, as if ozone formations are natural 
sounding balloons. If we compare TOC maps for 
several days, then we can determine the speed and 
direction of motion of the ozone layer and the 
stratosphere as a whole at the altitudes of the 
maximum ozone content (18–25 km). 

Figure 2 depicts the TOC field in the Southern 
Hemisphere for September 29–30 of 2000 drawn 
based on EP/TOMS satellite data. The field looks 
like as a “billow” with high TOC (up to 470 D.u.) 
about 7000 km in diameter that surrounds the zone 
with low TOC (ozone hole).  
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Fig. 2. Ozone layer in the Southern Hemisphere in late 
September of 2000.  

 

It is seen from Fig. 2 that for the day the ring 
turned through some angle in the eastern direction 
and extended a little bit. 

To determine the quantitative characteristics of 
the ozone motion in the stratosphere, a Dynamic suit 
of applied programs has been developed. It converts 
the data from the dat format into the form used in 
tabular processors. The main module calculates the 
speed and direction of motion of ozone masses using a 
correction-extreme algorithm8: the correlation 

coefficient between the TOC field for one day and 
that shifted and turned by some angle for the previous 
day is calculated. The highest value of the sampled 
correlation coefficient, which achieves sometimes 
0.95–0.98, corresponds to the diurnally mean shift 
and turn of the field. The TOC field can be divided 
into rings centered at the South Pole, and the speed 
and direction of motion in each of these rings can be 
determined.  

Figure 3 depicts the latitude dependence of the 
mean speed of air mass (along with ozone) motion 
obtained from comparison of the TOC fields for 
September 4 and 5 of 2000, in the period of ozone 
hole formation; every field was divided into 5°-wide 
rings. The latitudinal TOC distribution averaged over 
the Southern Hemisphere for September 5 is depicted 
in Fig. 3 as well. 

As follows from Fig. 3, the maximum of the 
speed along a parallel (speed of circulation) coincides 
with the mean TOC maximum at 40–45°S. In Figs. 3 
and 4, the positive values of the meridional speed 
correspond to the motion from the equator, while the 
negative ones stand for the motion toward the equator. 
Analysis showed that inside the ozone hole in the 
period of its formation at the latitudes from 70 to 85° 
the stratospheric air masses, first, circulate with 
significant speed (up to 24 deg/day) and, second, 
move toward the equator, that is, toward the billow. 
Thus, the ozone masses leave the region near the 
South Pole, in which the ozone concentration 

decreases. By the end of the period of ozone hole 
formation, the speed of circulation decreases. In year 
2000 the deepest ozone hole was observed on September 
29–30. In this period, the speed of circulation inside 
the hole vanished (Fig. 4), and in October it did not 
exceed 5 deg/day. Starting from September 30 the 
steady motion of the ozone masses toward the South 
Pole was observed inside the billow. 
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Fig. 3. Latitude dependence of the ozone mass motion on 
September 4–5: TOC latitudinal distribution (1), speed 
along a parallel (2), speed along a meridian (3). 
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Fig. 4. Latitude dependence of the ozone mass motion on 
September 29–30: TOC latitudinal distribution (1), speed 
along a parallel (2), speed along a meridian (3). 

 
Based on the above-said, we can propose one 

more additional mechanism of formation and 

destruction of the ozone hole. At high speed of air 
mass circulation inside the ozone hole, a significant 
centrifugal force arises, which “presses” ozone to the 
billow (centrifugal effect), and therefore in the 
period of the ozone hole formation a flow directed 
from the pole toward the equator appears inside the 
billow. In the period of the ozone hole destruction, 
the speed of circulation decreases drastically, and the 
hole is filled with ozone. These processes are natural 
and not connected with the effect of ozone-
destructive substances of anthropogenic origin.
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