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In the mathematical modeling of propagation of atmospheric contaminants the inverse problems are 
understood as problems of determining the type, coordinates, and power of the pollution source based 
on the data on the contaminant concentration given in the limited amount of observation points. The 
paper describes the problem of determining the coordinates and the power of a stationary source of 
atmospheric pollutants based on the use of the equation conjugated with a semiempirical equation of 
turbulent diffusion. When solving the inverse problem, the values of the particle deposit density 

accumulated in a snow cover during the winter period are used as the input data. 
 

There are two classes of problems describing the 
propagation of aerosol and gaseous atmospheric 

pollutants. The first class is associated to direct 
problems, that is, the pollution concentration must 
be found based on the known characteristics of its 
sources. The second class represents the inverse 

problems when it is required to determine the type, 
coordinates, and the power of the pollution sources 
from information about the pollution concentration 
measured in a series of control points. At the Euler 
approach to description of the turbulent diffusion, 
the use of a semiempirical equation of turbulent 

diffusion is the most successful. For stationary 

conditions of pollution propagation considered below, 
it has the form1 
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where C  and iU  are the mathematical expectations 
of the pollution concentration and components of wind 
velocity; Kij are the components of tensor of 
coefficients of turbulent diffusion (it is assumed that 

Kij = Ki at i = j and Kij = 0 at i ≠ j); Q  is the term 

describing the pollution source; x = x1 and y = x2 
correspond to horizontal coordinates, and z = x3 
corresponds to vertical coordinates. The bar denotes 
averaging over a statistical ensemble. The repeated 
indices mean a summation. The solution of direct 
problem is set in the rectangular region G with the 
surface S consisting of the side surface Σ, the lower 
basis Σ0 (at z = 0) and the upper basis ΣH (at z = H). 
The system of boundary conditions for Eq. (1) is: 

 C  = 0 at ∑, ∑H; 
sz
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where Vs is the rate of particle sedimentation; β is 
the parameter of the impurity interaction with the 
underlying surface.  

The Institute of Aerobiology of SRC VB 
“Vector” together with the Institute of Atmospheric 
Optics SB RAS, ICKC SB RAS, and ICMMG SB 
RAS systematically study the biogenic component of 
the atmospheric aerosol in the south of Western 
Siberia.6–9 One of the problems, solved within the 
framework of this project, is the mathematical 
simulation of propagation of atmospheric bioaerosols, 
search and identification of their local and global 
sources.9 Climatic conditions of Siberia are 
characterized by the stable snow cover observed over 
a long period of time, which is an accumulator of the 
atmospheric precipitation. The goal of this work is to 
solve the problem of determining the parameters of 
sources of atmospheric impurities based on data on 
the  precipitation  density  on  the underlying surface. 

Determine the power of a point stationary source 
of atmospheric impurities located at a point with the 
coordinates x0, y0, z0. Let 

 ( ) ( ) ( )0 0 0 0 ,Q Q x x y y z z= δ − δ − δ −  (3) 

where Q0 is the power of the impurity source. Owing 
to the presence of snow cover practically in the entire 
region of interest, one can consider approximately 
that β = const over the entire area. The quantity Q0 
and the source coordinate can be found, for example, 
by repeated solving of the direct problem (1) and 
(2). However, this approach is very cumbersome. 
Therefore, those methods of solving inverse problems 
are of particular practical interest, which are based 
on the use of the turbulent diffusion equation.2 For 
example, the problem of determination of the source 
coordinates and power requires the use of such type 
of equations. In this case we use as input data the 
values of the particle precipitation density, accumulated 
in the snow cover during the winter period.  

The mathematical expectation of the precipitation 

density of aerosol deposition ( ),D D x y=  is1 
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where T is the time of accumulation of aerosol 
particles in the snow cover. 

According to the Marchuk method,2 for the 

formulation of a conjugate problem, Eq. (1) is 
multiplied by a certain function C

*
 and integrated 

over the region G. As the result, we have the expression 
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It is assumed that in Eq. (5) 
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Now separate out at the underlying surface Σ0 
two regions: the region of sampling Σ1, and the 
region ∑ 0–1 supplementing Σ1 up to Σ0. The following 
system of boundary conditions for Eq. (6) 
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where ϕ0 is the arbitrary constant, transforms Eq. (5) 
into the identity 
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In contrast to the classical formulation of the 
Marchuk method, intended for solution of inverse 
problems, the obtained integral identity (8) uses the 
values of the integral impurity concentration 
measured not at some point inside the region G but 
at  boundary points of the region under consideration. 

Equation (8) makes it possible to solve the inverse 

problem of determination of the source’s type, 
coordinates, and power from the values of the density 

of the atmospheric impurity deposit measured in a 
series of reference points. A similar problem for the 

integral impurity concentration, measured at points 
above the underlying surface, was considered by us in 
Refs. 3–9. In Ref. 3, we formulated the problem of 
minimization of functional of the observational data 
and the results of solving the conjugate equations. 
Such an approach, for example, enables one to solve 
the problem of finding the characteristics of a point 
source of atmospheric impurities based on a limited 
array of observed values of their concentration. These 
methods were also generalized to solve the problem 

of finding the characteristics of ensemble of the point 
sources.5 

Further calculation and reasoning will be made 
orienting to solution of the above-mentioned problem 
with the use of the finite-difference methods. Assume 
that the point impurity source is located at the mth 

node ( 1, )m M=  of difference grid covering the 

region G and having coordinates xm, ym, zm. Now we 

consider several small areas Sk ( 1, )k K= , at which 

snow samples were taken. In view of relations (8), 
(3), and (4) we have 

 ( )0 /( ) , , ,k k m m mk kmD S T Q Ñ x y z∗ϕ β =  (9) 

where kC∗  is the solution of the conjugate 
problem (6), (7) for a small area ∑k with the area Sk; 
Dk is the measured value of the deposit density on 
the kth area. The values of Qkm represent the power 
of a stationary source located in mth node of the 
calculation template and creating the measured value 

of the deposit density kD  at the small area ∑k. Thus, 
after k-multiple solution of conjugate problems (6) 
and (7), Eq. (9) determines a set of values Qkm in 
each of M nodes of the calculation template. Now we 
determine the quantities: 
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By the condition of uniqueness of the inverse 
problem solution, only in one node of the calculation 
template a source can be found, which determines the 
values of the impurity deposit density measured at 
the given small areas ∑k. It is evident that the node 
of the calculating template with the minimal value of 

dispersion σm

2

 estimates the unknown coordinates of 

the source, and the value 
m

Q  estimates the unknown 

source power Q0. 
Now we consider the results of the numerical 

experiment demonstrating the applicability of the 
above approach. A stationary impurity source was 
located in the left-bank region of Novosibirsk at a 
point with the coordinates: x0 = 3.5 km; y0 = 8 km; 
z0 = 50 m (see Fig. 1). 

The particle diameter was set equal to 2 µm, and 
the source power Q0 = 1000 arbitrary units. The city 
buildings are gray in the figure. The river Ob, 
dividing the city into two parts, is dark gray. In the 
calculations, the meteorological conditions were 

typical for winter conditions at western wind of 3 m/s 
velocity at the level z = 2 m above the underlying 
surface. The wind velocity field over the city was 

determined by the numerical-analytical model.11
  

At the first stage the direct problem (1) and (2) 
was solved, i.e., the concentration fields of impurity 
and the deposit density accumulated on the underlying 
surface were calculated. Five black isolines show the 

deposit density of aerosol particles. 
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Fig. 1. Isolines of the deposit density of atmospheric impurities on the underlying surface. 

 

Their values are 0.8, 0.5, 0.2, 0.09, and 0.06 arbitrary 
units. The inner isoline has a maximal value of the 
deposit density, and the others are shown in order of 
their decreasing values. To solve the inverse problem, 
five reference points were selected numbered in the 

figure from 1 to 5. The values of the deposit density 

at these points and their coordinates, calculated by 
solving the direct problem, are given in Table 1.  
 

Table 1. Parameters of reference points chosen for 
calculations 

Coordinates of reference 
points, km 

Point 
number 

õ ó 

Calculated values of the 
deposit density,  
arbitrary units 

1 7 8.5 0.091 
2 8 8 0.551 
3 17 8 0.223 
4 19 8.5 0.106 
5 22.5 6 0.095 

 

Then the conjugate problem (6) and (7) has been  
solved. By relationships (9) and (10) in every node of 
the calculation template the values of Qkm were 

found, the values of 
m

Q  were calculated, and the 

nodes of the calculation template were chosen 

corresponding to the minimum of dispersion σm

2

. The 
calculation results are given in Table 2.  

The obtained data show that the reconstruction 
of parameters of the aerosol impurity source, 
according to the values of the particle deposit density 
accumulated in the snow cover, can be realized with 
a high degree of accuracy at three and more reference 
points. It is seen that the use of only two reference 

points introduces significant errors in calculations. 
These data are marked gray in Table 2. In future, 
when determining the characteristics of impurity 

sources based on the results of measurements,  
 

Table 2. Results of determination of source characteristics 

Point 
number 

The calculated source power 

m
Q , arb. units 

Minimal value of  

dispersion σm

2

, arb. units 
Source coordinates,  

õ, ó (km), and z (m) 

1, 2 998 0.015 3.5; 8.0; 50 
1, 3  2880  0.087  1.0; 8.5; 205  
1, 4 894 0.010 4.5; 8.3; 45 
2, 3, 4 998 0.196 3.5; 8.0; 50 
3, 4, 5 998 0.462 3.5; 8.0; 50 
2, 4, 5 998 0.335 3.5; 8.0; 50 
1, 2, 3, 4 998 0.180 3.5; 8.0; 50 

 

Pollution source

1 
2

3
4

5 
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one should take into account a spread of the 
experimentally obtained values of the deposit density. 
The influence of the measurement errors on the 
results of the inverse problem solution was analyzed 
by us in Ref. 12. 

Thus, this paper considers the problem of 
determination of the atmospheric pollution source 
parameters from the data on the deposit density on 
the underlying surface. This approach can be used for 
analysis of experimental data on the biogenic 
component of the atmospheric aerosol, search and 
identification of their possible local sources based on 
the measured values of the deposit density of aerosol 
particles accumulated by the underlying surface 
during winter period. Therefore, the snow sampling 
in spring and analysis of the samples for the content 
of living microorganisms and particles of protein 
nature represent a unique possibility to supplement 
and generalize the results of atmospheric 
observations.10 
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