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To model signals of magnetic and frequency scanning of a rarefied gas, the problem of 

resonant interaction of two counterrunning monochromatic waves and particles with the active 
transition J = 0 ↔ J = 1 in a stationary magnetic field is solved in semi-classical approximation by 
the method of density matrix. A resonance with the sign depending on the gas pressure, wave 
intensity, and magnetic field is found for systems with a split ground state. 

 

Introduction 
 

It is well known that interference of neighboring 
transitions can significantly deform the shape of a 
resonance fluorescence line 

1
 and even completely 

suppress absorption. 

2
 The degree of realization of 

quantum interference effects resonantly depends on the 
medium and radiation parameters. Therefore, we can 
assume that, matching the model, frequency, and 

intensity of laser radiation and achieving maximal 
interference parameters of the line shape, it is possible 
to reconstruct with high accuracy the medium or 

radiation characteristics from spectroscopic data.  
The best analog to the proposed method is the 

method of level overlapping based on the dependence 
of interference on the split between sublevels. From 
the magnetic scanning signal, the atomic constant and 
interaction constants are determined or the inverse 
problem is solved: with known medium parameters 
the external magnetic field is measured. 

3 
In the case of the classic level overlapping method, 

the scanning signal is assumed to depend linearly on 
weak intensity of the incident radiation. The current 
progress in scientific instrumentation allows studying 
magnetic scanning signals and analyzing nonlinear 
effects at high pumping power. The nonlinear Faraday 
effect in helium was studied experimentally in Ref. 4. 
It was noted that the existing theories well agree with 
the experiment only for nonsaturated absorption, but 
fail to predict the medium translucence in a zero 
magnetic field, which is observed experimentally at 
strong fields. 

Spectroscopic nonlinear resonances can be observed 
at close-to-saturation intensities. To separate resonances 
in the Doppler profile, the pump-probe technique or 
velocity-selective optical pumping are commonly 

used. 

5 For example, the absorption line of a weak 
wave in neon excited by a high-power counter 
running wave looks like a narrow resonance against 
the background of a wide Doppler signal, 

6 and the 
pump power augmentation leads to the resonance 
broadening and splitting.  

This paper presents analytical and numerical 
analysis of resonance fluorescence spectra and magnetic 
scanning signals for an ensemble of three-level systems 
with the magnetically split upper or lower levels in 
the field of counterpropagating waves of an arbitrary 
intensity. 

 

1. Problem formulation and general 
solution 

 
Assume that a cell with atoms or molecules of a 

rarefied gas is in a constant magnetic field H directed 
along the axis z. Monochromatic traveling waves, 
polarized along the axis x, with the frequencies ω± 
and amplitudes E± propagate in the opposing direction 
along the axis y: 

 E = E– cos (ω– t – k– y) + 

 + E+ cos (ω+ t + k+ y + ϕ),

where t is the time; k± are wave vectors of the 
corresponding waves; ϕ is the phase shift. In the case 
of equal amplitudes and frequencies, the traveling 
waves form a standing wave. 

Assume that the wave frequencies are resonant to 
transitions between the ground and excited states of a 
gas particle, and for the Λ-system the angular momentum 
of the ground state is 1 and that of the excited state is 
0, while for the V-system the angular momentum of 
the ground state is 0 and that of the excited state is 
1. The constant magnetic field splits the state with ñ 
J = 1 into three sublevels m equal to 0 and ±1 denoted 
from here on as the 0th, 1st, and 2nd sublevels, 
respectively. In the assumed experimental geometry, 
the optical radiation activates transitions with 

∆m = ±1. Further we treat gas atoms or molecules as 
three-level Λ-systems, assuming the transitions 

between the upper and two lower sublevels to be 
allowed with the dipole moment d and the transition 
between the lower levels to be forbidden with the 
zero dipole moment or as V-systems with the same 
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dipole moment of transitions from the ground state 
into the split excited one.  

Introduce the following designations: omit the 
second subscript in diagonal elements of the density 
matrix and represent the off-diagonal elements of the 
density matrix as sums of two terms proportional to 
the fast oscillating periodic component  
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− +
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The steady-state equations for elements of the 
density matrix of the symmetric Λ-system (the allowed 
transitions have the equal rates of spontaneous decay 
A1 = A2 = A and broadening constants Γ1 = Γ2 = Γ; 
the broadening constant of the forbidden transition is 
Γ3) in the standard approximations of a rotating wave, 
uniform broadening of a line profile, interaction 
representation, and in the model of relaxation 

constants 

7 with the above designations have the form: 
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−δ − Γ = + ρ − ρ

∆ − Γ = − + −

 (1)

where * denotes the complex conjugation; γ is the 

collisional relaxation constant; 2∆ = 2gµ0H/h is the 
split of the lower state; g is the Lande factor; µ0 is the 
Bohr magneton, V± is the Rabi frequency of the 
corresponding wave. Since the solution depends on 
the square Rabi frequency, below we use the 
parameter W± = V±

2 proportional to the intensity of 
the traveling wave I±. In CGSE units, we have  

 ( )
2 2

2

2 2

8 2
2

4

d I d
W dE I

c c

±
± ± ±

π π= = =h
h h

. 

The frequency shifts δj depend on the split 
magnitude, resonance accuracy, and the velocity of a 
particular particle: 

 
− − + +− +

− − + +− +

δ = + Ω + ∆ δ = − + Ω + ∆
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where 30± ±Ω = ω − ω  is the frequency detuning of the 

corresponding traveling wave from the natural 
frequency of the nonsplit transition ω30; v is the 
velocity of the particle interacting with the radiation.  

The normalization condition for the density matrix 

 1 2 3 ( )F vρ + ρ + ρ ≡   

includes the function F(v) determining the density of 
the velocity distribution of particles in the ensemble 
in the absence of external effects. This function will 
be assumed Maxwellian 

5: 

 ( ) ( )2 2 2( ) exp , 2 B a
F v v v v v k T m= − π = ,  

where v  is the root-mean-square velocity of particles 

depending on the Boltzmann constant kB, the 
ensemble temperature T, and the particle mass ma. 

Solution of problem (1) for the level populations 
can be represented as  
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where  
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 (3) 

The total work of the fields Ρ is proportional to 
the upper-level population and the sum of the 
Einstein coefficients of the allowed transitions: 

( ) ( )1 2 1 2 32 Im 2 Im 2 ,V R R V R R A
Λ Λ

− − − + + +Ρ = + + + = ρ (4) 

the work of the field of one wave depends on all 
populations: 
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Ρ = Ρ∫
  

(5)

 

where ( ) ( )1 1 1 2 2 2 3

Λ Λ Λ Λ
− + − + Θ = ζ + ζ ρ + ζ + ζ ρ + ςρ ϑ  . 

Since ζj± are proportional to the square Rabi 
frequency, the work of the field is directly 
proportional to W±, that is, the wave intensity.  

For the similar case of the V-system in 
designations (3) we obtain 
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(6)
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where ( ) ( )( )V V V V

1 2 2 2 1 1 3 .− + − +Θ = ςρ + ζ + ζ ρ + ζ + ζ ρ ϑ  Note 

that for the V-system the total work is proportional to 
the sum of the upper-level populations. 

The equations obtained cannot be integrated as 
they are. The dependence of the work and system 

population on the velocities of the particles in an 
ensemble is of independent interest, and, therefore, 
Section 2 considers the velocity distribution of 
populations; in Section 3 we present integration, as 
well as calculate magnetic scanning signals and 
spectral lines; and in Section 4 we draw magnetic and 

frequency scanning spectra for a weak probe field. 
 

2. Velocity distribution 
 

In the absence of electromagnetic waves, the 
population of a quantum system is concentrated at the 

lower level and depends on the velocity of  particles: 
 

 
( ) ( )

( )

1 2 3

V V V

1 2 3

( ) 2; 0,

( ); 0.

v v F v

v F v

Λ Λ Λρ = ρ = ρ =

ρ = ρ = ρ =
 

As particles interact with the traveling 

electromagnetic wave, some of them, due to the 

Doppler effect, fall in the exact resonance with the 
wave, that is, the following condition  

 0 , 1,2,j j±δ = =  (7) 

fulfills for them. Such particles are resonantly excited 
as a result of the interaction; the corresponding dips 

arise against the background of the Maxwell 
distribution for the lower levels, and the upper-level 
populations are nonzero only near the resonance, 
whose amplitude is proportional to F(v). At a zero 
split or exact resonance of one of the transitions in 
the system, the number of resonances decreases down 
to three, two, or one according to degeneration of 
condition (7). At linear excitation (we take into 
account only the first order in terms of the wave 
intensity), the upper-level population of the Λ- and 
V-systems can be represented as a sum of four 
Lorentz profiles L

kv(x, Γ) = Γ2/[Γ2 + (kv – x)]2, 
centered at the velocity x/k (k+ = k– = k): 
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The upper-level population and, correspondingly, the 
total work of the field in the V-system are twice as 
high as those of the Λ-system, since the common 
normalization condition of the density matrix (6) 
includes the split levels with the double weight. 
Thus, at the low intensity of the traveling waves, the 
upper-level velocity distribution of the Λ- and V- 
systems consists of four peaks (Figs. 1a and c). 

Consideration of the second order of smallness in 
terms of the wave intensity yields the products of the 
Lorentz and dispersion profiles with different centers 
but equal half-widths, which can be reduced to the 
sum of the Lorentz and Doppler profiles with 
different amplitudes: 

 ( )
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2 2
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2 2

3
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43
( ) ,

2 4

A

s s s ss d
x s

A x

ΛΡ ≅ Φ γ Ρ ≅ Φ + γ
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Γ + ∆

 

(8)

where  1 1 2 2d − + − += ζ + ζ − ζ − ζ  and the prime denotes 

real parts of complex parameters s, d, while the 
double prime denotes their imaginary parts [ζ and s 
are determined in Eq. (3)]. The sums of the 
dispersion profiles correspond to the real parts, while 
the sums of the Lorentz profiles correspond to the 
imaginary parts. The sum of the Lorentz and dispersion 
profiles with the same centers and widths yields the 
shift of the peak of the resulting profile and the 
asymmetric shape of its wings. Thus, the wave intensity 
increase leads to the field broadening of some profiles 
and to formation of a wide nonlinear peak on the 
Doppler signal (Figs. 1a and c).  

Under the saturation conditions, the upper-level 
population ρ3 sat(v) depends only on the relaxation 

constants: 

 ( ) ( ) ( )3 sat 33 2v F v Aρ = + Γ . 

If the detunings from the resonance are small 
(∆, Ω < Γ), then at linear excitation, too, the 

individual lines form one common profile (Figs. 1b and 
d), whose amplitude is maximal in the range of the 

medium fields. A similar, in the intensity, resonance 
is also observed in the case of one traveling wave 
interacting with a three-level system. The increase of 
the wave intensity leads to a decrease of the profile’s 
peak amplitude and its broadening, and there arises a 
dip at the center of the profile in the case of a standing 
wave. If the intensities differ by more than one third, 
the dip is absent. The increase of the standing wave 
intensity leads to excitation of particles with higher 
velocities. This effect is limited by the Doppler profile. 
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Fig. 1. Velocity distribution of upper-level population of Λ- (a, b) and V- (c, d) systems depending on the traveling wave 
intensity at A = 1/2, γ = 0.1, Γ3 = γ, Γ = A/2 + γ, kv = 130 and W+ = W– /3, ∆ = 5, Ω– = 3, Ω+ = 2 (a, c); W+ = W–, 
∆ = 0.5, Ω– = 0.3, Ω+ = 0.2 (b, d). 

 

The interference shift of the resonant frequency for a 
stationary quantum system was considered in Ref. 1 
and called the giant interference shift. In the case of 
one traveling wave and zero broadening coefficients, 

the analytical equations for 3 (0)
Λρ  from Eq. (2) 

coincide with the results of Ref. 1. 
For the case of the exact resonance of the standing 

wave (W–= W+ = W, Ω± = 0), equations (4) and (6) 

for the work of Ρ(v) can be reduced to a sum of the 
conditionally Lorentz and conditionally dispersion 
profiles relative to the square particle velocities:  
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The parameters 

4
,VΛΓ  and 

2
,VΛΩ  can have both 

positive and negative values, but 4 4
V ,VΛ ΛΩ > Γ  and the 

denominator in Eq. (9) is always positive. The obtained 
equation is in a full agreement with the results of 
numerical solution depicted in Figs. 1b and d.  

The first term in Eq. (9) is the profile with the 

amplitude 

4 4
V ,V(0) /( )LF a Λ ΛΩ + Γ  and half-width 

2 2 4 4 2
V ,V V1/2 2k v Λ Λ Λ= Ω + Γ − Ω . The second term has a 

zero minimum at the center and two maxima at the 

points 

4 44
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. The resulting 

distribution has a dip at the center and two side 
maxima with equal amplitudes: 
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At a low intensity of the standing wave, the  
central dip width is determined by the split ∆ and 
the width of the transitions Γ (the dip in Figs. 1b 
and d is absent, since ∆ < 2Γ). In the range of strong 
fields, the dip width linearly depends on the 
intensity, i.e., the maxima in the plots scatter 
exponentially with the log W increase.  

Determine the standing wave intensity, at which 
the upper-level population is maximal, and calculate 
the total work at the point found: 
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Since θ is proportional to ∆, as the split between 

the levels vanishes, the maximal upper-level 
populations depend only on the particle velocity 
ρj ≡ F(v)/3. 

The field broadening of the velocity distribution of 
the populations at W > 1 becomes significant: the half-
width of one line becomes comparable with the half-
width of the Doppler profile, which should be taken 

into account when choosing a method for integration 
over velocities in the region of strong fields. 

 

3. Spectrum of resonant fluorescence 
and magnetic scanning signal

 
When summing signals from different particles 

of the ensemble, individual spectral lines form a 
nonuniformly broadened Doppler profile. The 

magnetic scanning signal also has the Doppler shape 
and the characteristic dip at the zero magnetic field. 
Against the background of a wide spectral profile and 
the characteristic profile of magnetic scanning, we can 

separate some features: nonlinear resonances, whose 
positions, amplitudes, and half-widths are determined 
by the system parameters, magnetic field and traveling 
wave intensity and frequency.  

Integrate Eq. (8) assuming that the width of 
every line is much smaller than the root-mean-square 
velocity of the particles in the ensemble and find 
the approximate equation for integral (2), separating 
some dimensionless Lorentz L(x,y) = 1/(1 + x2/y2) 
and dispersion D(x,y) = x/y/(1 + x2/y2) profiles 
against the background of wide Doppler profiles  
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Equation (10) describes nonlinear resonances 

standing out against the background of the Doppler 

(10) 
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profile in the region of weak fields. Obviously, 
resonances with the positions depending only on ∆ 
are realized at magnetic scanning, and resonances with 
the position depending only on Ω± are realized at 
frequency scanning. Resonances depending on frequency 
detunings and on the split magnitude are observed in 
the both versions of the experiment, and their 
positions are determined respectively by the magnetic 
field or by the frequencies of the traveling waves. 
The resonances in the Λ- and V-systems have the 
same positions and half-widths, but their amplitudes 
differ significantly only at small γ. In the case of V-
system, the terms with X1 and X2 describe nonlinear 
dips, whose amplitude is inversely proportional to 
A + γ. For the case of Λ-system, the first two terms 
in Eq. (10) are inversely proportional to the broadening 
coefficient γ, and the first term alternates the sign at 
γ = A/3. At γ, Γ3 → 0 the approximation of low  
 

intensities in form (10) is incorrect, but exact 
equations (2) and (4) for small γ and Γ3 cannot be 
integrated analytically, therefore the limiting case will 
be treated numerically. Figure 2 depicts the pressure 
dependence of the magnetic and frequency scanning 
signals for Λ-systems at the standing wave intensity 

W = 0.1 (Figs. 2a and c) and the corresponding 
intensity dependence at γ = 0.01 (Figs. 2b and d) 
obtained through numerical solving and integrating 
of the problem. Compare the features of the drawn 
profiles  with  the  resonances  separated  in Eq. (10). 

The plot of the frequency scanning signal (Fig. 2c) 
has three resonances in the region of low pressure. 
The central peak at Ω = 0 transforms into a dip with 
the increasing pressure, as follows from Eq. (10). At 
zero pressure this resonance increases up to a finite 
quantity, and the side dips described in the second 
term of Eq. (10) are almost invisible in the plot. 
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Fig. 2. Magnetic scanning signal (a, b) and line profile (c, d) vs. pressure (a, c) and standing wave intensity (b, d) at 

A = 1/2, Γ3 = γ, Γ = A/2 + γ, kv = 130, Ω± = 5 (a, b) and ∆ = 5 (c, d), and W±=0.1 (a, c) γ = 0.01 (b, d). 
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The magnetic scanning signal has a more complex 
shape (Fig. 1a). At a zero split, the first and third 
terms in Eq. (10) are maximal. The first term 
corresponds to the peak at low pressure, while the 

third one corresponds to the dip. With the increase of 
γ the amplitudes of the resonances decrease. An 
increase of the standing wave intensity (Figs. 1b and 
d) leads to the increase of the Doppler signal 
amplitude and to transformation of the resonances; in 
this process, the central resonance on the line profile 
twice alternates its sign. 

Integrate Eq. (9) using the theory of residues. 
Thus we obtain the work proportional to the upper-
level population of the Λ- and V-systems at zero 
detuning of the standing wave: 
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Fig. 3. Line profile (a, c) and magnetic scanning signal (b) vs. standing wave intensity and upper-level population vs. split 

and detuning from resonance (d) at A = 1/2, Γ3 = γ, Γ = A/2 + γ, γ = 0.01, kv = 130 and ∆ = 0 (a), Ω± = 0 (b), ∆ = 0.1 (c), 

W = 10 (d). 
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Equation (11) for extremes in ∆ and W can be 
obtained numerically. 

The plots of the line profile at the zero split and 

the magnetic scanning signal at the exact resonance 
are shown in Figs. 3a and b at different values of the 
standing wave intensity. The line profile has no 
features and demonstrates only uniform intensification 
with following saturation. In this case, Doppler 
broadening levels off the nonlinear effects. In the 

magnetic scanning signal described by Eq. (11), one 
dip broadens at the zero split with the increasing field 

(similarly to the case of excitation by one traveling 

wave), while another one has a constant width. 
The small increase of the split significantly 

changes the frequency scanning signals (Fig. 3c): the 
nonlinear resonance with the amplitude twice as high 

as that of the Doppler signal arises in the region of 
medium fields. It should be noted that the maximum 
population in this plot is roughly halved as compared 

to the maximum population at ∆ = 5 (see Fig. 2d). The 
shape of the magnetic scanning signal is not changed at 

small  detuning  of the standing wave from the resonance. 
Figure 3d depicts the dependence of the upper-

level population of the Λ-system on the frequency 
detuning from the resonance and on the split magnitude 
at the standing wave intensity W = 10. This plot 

allows us to evaluate the dependence of the line profile 
on the split magnitude and the dependence of the 
magnetic scanning signal on the detuning. At variation 
of the split magnitude, the shape of the line profile 
changes significantly, namely, at ∆ = 1–8 a dip is 
observed at the center of the profile in contrast to the 
peak at all other values of ∆. The dip in the magnetic 
scanning signal becomes narrower in the region of 
zero detuning. 

 

4. Pump-probe technique 
 

Assuming that the wave intensity W– is much 

lower than W+, let us study the spectra of frequency 
and magnetic scanning of a weak probe wave. In the 

second approximation in terms of intensity, separate 
nonlinear resonances in the work of the field of one wave: 
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where 

  

( )
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= ∆ − Ω − Ω Γ + ∆ + Ω + Ω Γ

  

All the resonances separated depend on the product 
of intensities of the two waves. The resonance of the 
first term in Eq. (12) is centered at the frequency of 
zero detuning, and for the Λ-system it alternates the 
sign with the increasing pressure. The resonances of the 
second term (Y2) are maximal when the traveling wave 
frequency coincides with the frequencies of allowed 
transitions 1 and 2. The third term in Eq. (12) is 
proportional to the product of the dispersion profiles 
with different positions and half-widths.  

Figure 4 depicts the plots of the probe field work 
for Λ- and V-systems at the exact resonance of the 

pump wave (Ω+ = 0). The calculation conditions 
correspond to the situation that the first term is 
positive for the Λ-system and negative for the V-
system. In the plots corresponding to frequency 

scanning of the Λ-system (Fig. 4a), we can see the peak 
(Ω = 0) and two side dips (Ω = ±5), while for the V-
system we see three dips at the same points (Fig. 4c). 
The side resonances correspond to the sum of the 
Lorentz profiles Y2. The same resonances on the plots 
corresponding to magnetic scanning (∆ = ±5, Figs. 4b 
and d) fall on the dip of zero split.  

Note that in the region of nonlinear interaction 
of the probe wave and the counterrunning pump wave, 
the increase in the intensity of the latter leads to 
decrease in the work of the probe field. The plots in 
Fig. 4 at W > 100 include zones, in which the work 
of the probe field is negative, that is, the probe wave 
is intensified.  

 

Conclusion 
 
The use of the standing wave or two traveling 

counterrunning waves of the same frequency and close 
intensity for resonance excitation of atoms allows us 
to obtain a dip at a zero magnetic field; the dip’s width 
is determined by the gas pressure in the cell and 
independent of the pump power. The increase of the 
pump radiation detuning from the resonance leads to 
the signal amplitude decrease. 

Nonlinear interference effects are suppressed by 
chaotic motion of gas atoms and molecules. Therefore, 
to distinguish nonlinear resonances against the 
background of the Doppler profile, the biharmonic 
excitation by, for instance, backward traveling waves 
is needed. In this case, the profile of the resonant 
fluorescence line is more sensitive to the radiation and 
atom  parameters  than  the  magnetic scanning signal. 

The interaction of gas atoms in the magnetic 
field with backward traveling modes, considered 
theoretically in this paper, can find its practical 
application in spectroscopy of nonlinear resonances 
and physics of gas lasers tuned by the magnetic field. 
The needed conditions are: gas pressure of 1–5 Torr, 
radiation intensity of 0.5–5 W/cm2, and the magnetic 
field strength of 0–20 G. Particular attention should 
be paid to the effect of sign alternation of the nonlinear 
resonance with increasing pressure for systems with a 
split ground state, since this effect can be used in 
solving the inverse spectroscopic problem. 
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Fig. 4. Work of the probe field vs. the detuning frequency (a, c) and the split value (b, d) at different intensity of the pump wave 

and at A = 1/2, Γ3 = γ, Γ = A/2 + γ, γ = 0.01, W– = 10−7, Ω+ = 0,
 
kv = 130 and ∆ = 5 (a, c), Ω– = 5 (b, d). 
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