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Peculiarities of laser beam propagation with phase conjugation in turbulent medium under strong
fluctuations are numerically investigated. The contrast gain is found connected with the appearance of zero-
intensity points. It is proposed to measure a light wave phase on spatiotemporal trajectory at those aperture
points, where intensity is significant and to determine boundaries of probable optical vortices, i.e., zones
where intensity vanishes. Principles of operation and block diagrams are described of two new wave front
meters, Hartmann scanning sensor and directional shear interferometer.

Introduction

In adaptive optics, illuminating an adaptive mirror
with a wave having simple shape, for instance, a Gaussian
wave forms a backward wave. This mirror reproduces
phase measured with a wave front sensor. This phase
ceases to be a continuous function of two variables when
optical vortices localized around zero-intensity points
appear in the measurement plane. The optical vortex
phase is not determined at a zero point and it is screw-
like in its vicinity but the wave amplitude there is small
therefore the vortex cannot influence the wave as a
whole. However, the backward wave really formed has
significant amplitude over the entire adaptive mirror
that leads to inadequate increase in the vortex influence
and bring in an error in the system operation.

Numerical investigation into optical radiation
propagation through ground layer of the turbulent
atmosphere along horizontal paths has made the
conditions clear for the appearance of deep fading wave
parts having zeros of intensity. The results are presented
in Section 1. In Section 2 a possibility of measuring phase
function on spatiotemporal trajectory is validated.
Further, in Sections 3 and 4, two engineering solutions
are presented that illustrate feasibility of such
measurements. The main results are presented in
conclusion.

1. Numerical investigation into
propagation and phase conjugation of
Gaussian beams in a turbulent medium

In numerical experiment a collimated Gaussian
beam, being a reference radiation source, with the
initially plane phase propagated through randomly
inhomogeneous medium, experienced phase conjugation
in the plane of an adaptive mirror, and came back.
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Figure 1 shows schematically the model of the
experiment.
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Fig. 1. Schematic model of the experiment on phase conjugation
of a Gaussian beam propagated through a turbulent medium.
P, is the object plane; P, is the adaptive mirror plane. A
number of phase screens is four (shown by gray color), grid
matrix rank is 512, the ratio between the outer and inner
scales is Lo/ Iy = 103.

The calculations have been done using a well
known numerical model.!»2 The dimensionless parabolic
quasi-optical equation have been solved in paraxial
approximation in the form

(A2 2
W L\ 7 9 7w, (1)
oz 2\ax? oy

where W(x, y, z) is normalized complex amplitude of the
wave; T is the temperature field with the spectral density
2\—11/6
)

Flxyk,) = CF (k + 17+ exp [} + 1) /xn],

Ko = 2TE/L(), Km = 2Tt/l(). (2)

In this equation x, and ¥, are spatial frequencies; Lg
and [, are the outer and the inner scales of turbulence
normalized to the beam radius g, in the experiment
the former ones were 100 and 0.1 cm, respectively. The

wave parameter ZOIKL/Zna% was equal to 0.1 for
wavelength A = 0.63 pum. The values of all parameters are
characteristic of a horizontal path with the length
L =1 km in the ground layer of turbulent atmosphere,
the beam radius being @y = 10 cm.
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Two-cycle scheme of the splitting method has been
used. The number of steps on the path were four, the
grid matrix rank was equal to 512. The Monte Carlo
method has been used; estimates have been calculated
as a mean over 200 realizations.

Influence of turbulence on the beam was

characterized by scintillation index G%, that is a
normalized variance of fluctuations of the Gaussian

beam intensity I calculated on the beam axis. The

2

dependence of o7, on temperature structure

characteristics C% is presented in Fig. 2.
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Fig. 2. Dependence of scintillation index 0% on temperature

- 2 . . .
structure characteristics C7, obtained in the numerical
experiment. Estimations were calculated as a mean over 200
realizations. Root-mean-square deviations are shown by bars.

Figure 3 presents distributions of intensity and
phase of the Gaussian beam after passing through the
turbulent medium at various values of scintillation

index G%, corresponding to both week, G% <1, and

strong, G% > 1, turbulence. It is seen that under strong
turbulence the beam experiences significant amplitude-
phase fluctuations. The beam intensity has strongly
pronounced peaks that are several times greater than
the initial Gaussian beam maximum. In the central part
of the beam there appear areas with deep intensity
fading where the appearance of zero intensity
surrounded by optical vortices is possible.

When considering energy transfer through the
atmosphere, we will believe that light wave
propagation in the medium and in the optical system
channels, between object plane P, and adaptive mirror
plane P, is a linear integral transform. With all this
going on, the reciprocity principle holds and the energy
is conserved. The following relations can present
these features:
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W, (r,) = j jmro,rC)WO(rO)dro,
P,

W, (r,) = Hh(ro,rC)W(rc )r,; 3
Fe

[l wae, ) dr, = [l Wt dr.
P, P

Here function A(r,, r.) = h(xy, ¥, Xc, yo) is the pulse
response. Since the reciprocity principle holds in the
turbulent medium, this function does not depend on
propagation direction between P, and P, planes.3

Interrelation between the input and output errors
is among most important characteristics of the system.
When deriving expressions for calculation of errors, we
have taken into account Egs. (3) (see Ref. 4), from
which it follows that square norm of difference between
complex functions

[[wo -, ) dr, =
5

o

= [ wetro- Wt ar, (4)
P

c

keeps as the wave propagates in the system under
consideration.

In Eq. (4) the function W,(r.) characterizes the
modified wave formed on the adaptive mirror. In this
connection we believe that W.(r.) provides maximum
effect when the reciprocity principle is realized. The
function Wo(ro), in its turn, is a wave that was
formed in the object plane as a result of propagation of
the modified wave W.(r,) from P, to P, plane.
Modification does not exist at complete phase
conjugation therefore both parts of the Eq. (4) vanish.

The input error is calculated on the adaptive
mirror at the plane where the backward wave P, is
formed. It is expedient to hold in this error the
influence of all wave constituents. Towards this end we
determine the error as a relation of square norms

2drC/J'J.|WC(rC)|2drC. (5)
1

€ :\/ I.ﬂ W, (r)-W,(x,)
P,

The error (5) depends on the wave phase therefore
it is not suitable for characteristics of image formation
quality or focusing. As such operations do not require
the phase to be held, it is expedient to calculate the
root-mean-square deviation of the amplitude of a phase-
conjugated wave ;10 from the object amplitude A, at

the plane P,,.
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Fig. 3. Intensity (on the left) and phase (on the right) of a Gaussian beam after passing turbulent medium with different values of

the parameter C%=0, 0.1, 1, and 5 (@, b, ¢, and d).

This error characterizes the results of the system
effect in other words it is the output error:

£ = \/ j J.[Ao(ro)—ﬁo(ro)]zdro / j jAg(ro)drO. (6)
AO AO

It is obvious that in the case the ratio between g,
and g, will not be linear, as in Eq. (4), for all types of
modifications of the phase conjugated wave, but at
small g, the linearity holds. In the general case, the
interrelation is monotonic.4

In the numerical experiment we have studied

behavior of £,(C%) that is one of two modification
methods (amplitude and phase) proposed in Ref. 4. The
amplitude modification consists in zeroing those wave
parts on the aperture that have amplitude lower than a
preset threshold. Phase modification of the phase-
conjugated wave consisted in that the wave phase in the
parts where the amplitude was lower than the preset
threshold has been substituted for constant value or
some periodic function that removes these wave parts
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from the propagation channel. In so doing the wave
amplitude has been kept unchanged.

The threshold value AA has been chosen as fractions
of the maximum amplitude of a Gaussian beam. An
estimate of g, value was calculated as a mean over 200
realizations within circle having radius four times greater
than the initial beam radius. All modification methods
yielded practically similar results. It was found that
there are two different behavior types of sO(C%). They
are presented in Fig. 4.
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Fig. 4. Dependence of phase conjugation error g, on the

parameter C% at the amplitude threshold value A4 = 0.05; 0.1;
0.2; 0.3; 0.4 (@) and AA = 0.006; 0.008; 0.012; 0.015 (b). The
estimates have been calculated as a mean over 200 realizations.
Root-mean-square deviation is shown by vertical bars.
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Sallow local intensity minima and low maxima turn
out to be lower than the threshold at AA > 0.05. It is
obvious that in such domains the energy may increase
as the turbulence increase, therefore g, monotonically
grows as well. This increase should likely stop and the
curves in Fig. 4a will reach their saturation at a stronger
turbulence, but such turbulent fluctuations have not
been studied yet.

At AA<0.02, g, first, increases, reaches its
maximum, and then smoothly decreases. Such
dependence can be explained by the fact that turbulence
intensification in the medium is accompanied by
deepening of the local minima and their consequent
conversion into zero-intensity points. Zero-intensity
points formed differ qualitatively from other points on
the aperture because an optical vortex is localized around
them. An energy flux in the vortex has outward
constituents. As a result, the wave energy goes out from
a zero point that, probably, facilitates its steadiness.
The appearance of a zero is a discrete event. Accumulation
of such events along with strengthening of fluctuations
results in that the intensity is no longer lower than the
preset threshold. As a result, the phase conjugation error
€, stops to grow and begins to gradually decrease. This
explains the presence of maximum in Fig. 4b.

It is known from field experiments,® that when
propagating through the turbulent medium, laser beam,
being in the area of strong fluctuations, disintegrates
into separate radiation filaments, whose cross size weakly
depends on the path length. The numerical experiment
performed has revealed the initial stage of forming such
filaments. It is characterized by disappearance of the
beam parts where the energy is lower than the preset
threshold and by the beam contrast expansion.

Thus, the error g, arising when wave parts with the
amplitude lower than the preset threshold are removed
from the adaptive system channel, grows rather slowly
as the fluctuations increase and it has some limits. It
shows that as turbulence increases some domains are
formed containing insignificant energy, whereas the main
portion of the wave energy is localized in filaments (see
Fig. 3). The phase within each of the filaments is a
continuous function by definition.

Phase ceases to be continuous function of two
variables in the aperture parts where energy is
insignificant when points with zero intensity appear.
However it can be continuous function on the trajectory
lying in the aperture plane. The trajectory should fill
the filaments’ domains with the necessary density and
connect these domains going around a zero point. In those
domains where existence of optical vortices is possible,
there is no need to measure phase it is enough to
determine only their boundaries.

When an ordinary multichannel wave front sensor
with parallel information detection is used, a computer
can realize numerical methods of phase reconstruction
along the considered trajectory. But parallel
measurements themselves are not needed. It is necessary
only to minimize g, i.e., difference between the phase-
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conjugated wave and the wave required for total
compensation in accordance with the reciprocity
principle. Therefore it is possible to consider scanning
of the aperture to be measured by single-channel wave
front sensor, consequent calculations, and phasing of
the adaptive mirror elements. In this case time will be a
trajectory parameter over all interval of the system
operation.

Scanning gives a possibility of realizing in an
adaptive system a definite strategy, namely, aperture
domains having higher intensity should be measured
more accurately and inverted with less delay as compared
to those domains where light intensity is small.6 This is
the preference over the parallel signal processing.

Beyond the problems of optical vortices, other
possibilities appear during scanning. In particular, it is
very suitable to apply Fast Fourier Transform (FFT),
intended for periodic functions, for analysis of continuous
functions determined on a closed path. This algorithm
has high speed and allows one to reduce the problem to
optimal filtration of functions of the trajectory
parameter, at the same time no edge effects arise.”

Finally, when scanning function of two variables,
it is possible to get statistically independent realizations
determined on the orthogonal trajectories. They are
necessary, for example, for calculating average values
or determining a posteriori error of the phase
reconstructed.8

Below we shall justify a possibility of measuring
light wave phase on the trajectory in the aperture plane
and consider schematic models of two scanning sensors
— diffraction and interference ones.

2. Phase determination
along the trajectory

It is necessary to give a non-contradictory definition
of a wave process phase. Maxwell equations do not
include such definition therefore some supplementary
statements are considered. They specify function class
determining mathematical model of a wave. There are
publications concerning problems on definition of
amplitude and phase as applied to one-dimensional
oscillation process. Vakman%19 and Zolotarev!! give
rather complete bibliography on this problem. Different
methods for determination of amplitude and phase are
useful in the framework of problems to be solved and
mathematical models used, but an analytical signal (AS)
introduced by Gabor!2 in 1946 has accepted the widest
use. It happened mostly due to efforts by Vakman. When
comparing different methods, he took into account
continuity and differentiability of the signal amplitude,
unit independence of phase, and coincidence with
intuitive ideas of amplitude and phase of harmonic
functions.

But this problem is not complete. The reason is
that there is no uniform approach to construction of
mathematical models of oscillations, waves, and signal
conversion systems. The algorithms for amplitude and
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phase determination have been proposed, but there is no
explicitness about principal features of both the signal
and concepts introduced.

Analysis of a light wave is carried out in the P,
plane of an optical system after its interaction with
inhomogeneities. We believe that the medium there is
non-conducting, homogeneous, and isotropic. We also
believe that in constitutive equations relation between
induction and field strength is linear and local for both
electric and magnetic fields. Let light polarization be
unchanged. At such limitations Maxwell equations are
reduced to the wave equation for quasi-monochromatic
scalar and real wave Ul(x, y, z, t) with the constant
absolute refractive index. The solution of this equation
can be represented in the form of the triple Fourier
integral

U(x,y,z,t)=

= j I S(a,B,0)expilax + By +yz +ot)dadpdo o))

—0

and it makes sense of scalar wave propagating from the
z = 0 plane in the opposite directions. Here o and B are
spatial frequencies; ® is time frequency; S s
spatiotemporal spectrum in the plane orthogonal to the
z-axis, i.e., wave propagation direction.

Equation (7) is valid within above assumptions
and reduces the problem on light wave propagation in
the homogeneous medium to defining the initial
conditions for the spectrum. The spectrum S(a, B, ®)
can be defined as two-dimensional Fourier transform
with respect to x and y of the wave given in Kirchhoff
approximation. According to this approximation, in the
recording plane a wave scattered by an object is
prescribed within the optical system aperture, while
outside the aperture it is supposed to be zero. It is very
rough approximation and it does not satisfy the wave
equation where it was defined. But filtering properties
of Eq. (7) at z > result in suppression of the error
introduced by Kirchhoff conditions. The plane waves
are filtered, while inhomogeneous waves, for which an
inequality k<o’ + Bz is valid, decay exponentially.

Scalar approximation need in considering the
problems in parabolic approximation, where k2 >>02 +
+ Bz, y~k— (o + Bz)/2k with a narrow spatial
frequency spectrum, Aa/o,<1, o, is the carrier
frequency, Aa is a halfwidth of the spatial frequency
spectrum. Besides, it is known a priori that relative
time spectrum width of the quasi-monochromatic wave
U(x, y, z, t) is very small, Aw/o. < 1, o, is the carrier
frequency, Ao is time spectrum halfwidth. These are the
physical grounds for the assumption on the spectra
finiteness, so the integration limits in Eq. (7) will be
finite quantities.

The light wave properties under consideration can
be expressed most naturally if U(x, y, z, t) is an integer
function of exponential type for every variable.
This means that physical characteristics (quasi-
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monochromaticity —and  parabolic  behavior) are
superimposed on the approximation of U(x, y, z, t)
wave. The approximation is a solution of another task;
at least it has no inhomogeneous values, whereas it will
be a part of the amplitude and phase concepts that do
not result from the wave equation.

Let us apply the definition of analytical signal
with respect to variable ¢, which consists in providing
time spectrum causality, to the real function (7) and
obtain an analytical signal as a specific solution of
the scalar wave equation that corresponds to quasi-
monochromatic wave propagating in homogeneous
medium in positive direction of the z-axis

W(x,y, 2z, t) =Ux, y, 2z, t) +iV(x, y, 2z, t) =

= Idco J- IS((x,B,co) exp i(ox + By +vz — ot) dadB.  (8)
0 —00 —00

The sign of the spatial frequency y was chosen such
that inhomogeneous waves decay at z — + o, and of
the frequency ® — such that wave front moves in the
same direction. The frequency o, as well as y, does not
change the sign, so the function W(x, y, z, t) is an
analytical signal not only with respect to variable ¢,
but also with respect variable z.

It follows from Eq. (8) that such fundamental
light properties as spatial and time coherence, as well
as the fact whether it is monochromatic or white, are
connected with spectrum width S(a, B, ®) of the
analytical signal W(x, y, z, t).

Let parametric equations for line I(¢) on the plane
are given:

x =%, T to (), y =y, + to,(0), z =z, 9
Let us clarify under which conditions the wave will be

an analytical signal on this line. Substituting the
parametric equations into Eq. (8), we obtain

WI(t)] = O]‘dwj‘ O}S(Q,B,m) x

0 —00 —00

x exp i[(og — ) t + @,] dadB, (10)
where
o5 = o 0 (6) + B oy (8); 9o =axy,+Byot Y2

Denote the largest width of the spatial spectrum
carrier as 1 = max (Ja|, |B]) and maximum speed of the
aperture scanning as v = max (| 0,(t)],|0,(t)). Then we
find that max |od < 2no. Let us consider the value

q:20n/mC:\/§ vsind /¢ <1,

where 0 is maximum angle between the wave vector
and recording plane. Numerical estimates made for ¢ in
the frequency interval (o, + Aw) at An/©, >>1 show
that inequality o — . <0 is valid at practically
important values of the parameters n and v. Thus, the
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factor at the variable ¢ in Eq. (10) does not change its
sign and function W[I(¢)] is an analytical signal on the
line with parameter ¢.

Analytical signal (10) is a section of the function
W(x, y, z, t) [Eq. (8)]. Therefore the amplitude and
phase of this signal are sections of |W(x, y, z, t)| and
argW(x, y, z, t) that are functions of four variables. It
is clear that this property is a consequence of the fact
that time and spatial spectra connected with wave
propagation direction are narrow-band. An optical wave
in quasi-monochromatic and parabolic approximations
has these properties. Besides, when spatial coordinates
and time enter the exponent (Eq. (8)) as additive parts,
the structure of the wave equation solution allows one
to use in analysis both spatial and time carriers
simultaneously.

Practical importance of Eq. (10) is that it gives a
possibility of synthesizing algorithms for phase
measurements in different spatiotemporal, one- and
multidimensional sections and provides its coincidence
in these sections with the only phase that is the function
of four variables.

Let us present the function of phase in the aperture
plane in the ordinary form

Vix, y) (11

¢(x, y) = arctan Uz, 9)

and consider its partial derivatives with respect to x
and y variables
,_wu-uyy o VUSUY
(Px - A2 ) (py - A2 )
A2=U24+V2, (12)

Considering the wave function W(x, y) = U(x, y) +
+iV(x, y) as a function with finite Fourier transform
with respect to all variables, one can draw a conclusion
that partial derivatives of phase, including the higher
order ones, exist and they are continuous at all points,
where A(x, y) # 0. The function of phase can be
determined by a curvilinear integral of total differential
over a trajectory with parameter p, lying in xy plane

(x,y) pd
(o C oy (do
olx,y) = j-((pxdx-s-(pydy) = .[dp dp, (13)
0 0
where
{x = x(p)
y=yp)

are parametric equations.

If the trajectory does not traverse zero points and
does not cross sections going from zero points outside
the integration domain, the integral is trajectory-
independent in such a simply connected domain. The
phase function is continuous and single-valued on such
a trajectory. This property will allow an arbitrarily
dense filling of the plane under study with this
trajectory.
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3. Hartmann scanning sensor

Hartmann method is applied for testing telescope
optics. The method is based on measurement of focal
spots’ position. Descartes and Lomonosov knew this
method. Vitrichenko in Ref. 13 described classical version
of this method in detail, where one can find complete
bibliography on this problem. The so-called Shack—
Hartmann Test!4 is the further development of the
method. In this test small lenses or prisms are used in
every sub-aperture instead of a diaphragm in its classical
version. It makes the optical layout more compact and
admits wvariations in focal spot sizes and their
displacement.

The Hartmann sensor uses interrelation between
coordinates of sub-aperture spot center of gravity and
wave phase derivative in this sub-aperture. Let us
consider the first moment m¢ of the squared modulus of
Fourier transform |S(a)|2. Applying the moment
theorem and Parseval formula to function Wi(x, y)=
=A(x, y) expigp(x, y) and omitting y coordinate, we obtain

my= Joc|5(a)|2doc =

—00

L wey W | =
- x=0
O O R I
2n 4T ’
Imaginary part of this equation should be equal to zero
based on condition that the squared modulus of
function W(x) should be integrable over all x axis.
Normalizing Eq. (14), we obtain an expression
that relates the coordinate of focal spot center of
gravity and phase derivative

j joc|S(oc,B)|2 doadp

o === _

C w o

j ﬂS(a,B)|2dadB
J‘J‘A2(x,y)(pj'c (x,y)dxd y
e, 15)

HA2(x,y)dxdy 7
G

where G is a sub-aperture domain in Hartmann
diaphragm.

It follows from this equation that coordinate of focal
spot center of gravity gives the value of phase derivative
on the sub-aperture if only the amplitude A(x, y) = const
and phase is planar (¢, =const, 0y =const). Otherwise

it will be average or weighted mean derivative. These
are the method limitations. The sub-aperture size itself
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makes no sense in this case, but it is obvious that it
should be as small as possible. In the atmosphere the
scale, on which the constancy and planarity conditions
could be considered fulfilled, is determined by the
coherence radius r, (Ref. 15). Phase difference on the
7, scale may reach 2mradian that may result in focal
spot displacements and larger aperture size, so it will
be impossible to distinguish focal spots from different
apertures in the ordinary Hartmann scheme.

Applying Shack—Hartmann Test, one can decrease
focal spot displacements by means of changing focal
length of the sub-aperture lens. But in this case it is
necessary to increase sensitivity and decrease a pixel size
of the photodetector array. This contradiction can be
resolved by means of placing prisms into sub-apertures
that increase a distance between fluctuation zones of
separate spots.

An improvement of the sensor design that allows
one to measure wave phase as a phase of spatiotemporal
analytical signal on the trajectory has been suggested in
1996.6 Block diagram of the sensor is shown in Fig. 5.
Since this sensor has only one aperture, relative to which
a beam to be measured is scanned, there are no difficulties
connected with choosing the number and size of sub-
apertures. In scanning, the sub-aperture size may be
changed for the purpose of increasing sensitivity and
resolution, as well as for meeting conditions of the
amplitude constancy and phase planarity more closely.
In such a design a range of the focal spot displacement
has no principle limitations. It may be more than 9000 A
at wave front root-mean-square measurement error of
0.014 \. These values are presented in more late paper,16
where a realization of an idea similar to Hartmann
scanning sensor is described.

o(t)

Fig. 5. Hartmann scanning sensor: ( ) multiplying blocks;
(O) transmission coefficients.

Principle of operation of the sensor shown in Fig. 5
is based on integration of a total differential (Eq. (13)).
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The following operations are performed in the sensor.
Light beam 7 after scaling in the input optical system 2
comes to the deflector 3 that scans it along the diaphragm
aperture 4, behind which there is a lens Fourier
converter 5. The converter forms a focal spot on the
coordinator 6 that determines abscissa and ordinate of
the spot’s center of gravity, as well as its integral
intensity. The latter enters the blocks 72 and 73 as a
feedback signal for the trajectory correction. Processing
of the abscissa and ordinate of the focal spot center of
gravity is carried out in two channels. The intergrators
8 and 9 contain the difference between coordinates
measured in block 6 and the displacements coming from
blocks 70 and 77 that determine an inclination of the
deflector 3. Signals proportional to the phase derivatives
with respect to x and y coordinates, coming from the
outputs of the integrators 8 and 9, and time derivatives
with respect to Cartesian coordinates of the trajectory
x(t) and y(¢), coming from the blocks 72 and 73, are
multiplied, added up, and integrated in accordance with
Eq. (16), in block 74. The phase ¢(¢), as a function of
time, is formed at the output of block 74. The derivatives
of Cartesian coordinates of the trajectory from the
blocks 72 and 73, in its turn, are integrated in blocks
10 and 11, re-calculated for three-point control using
coefficients ¢ and s at the input of block 7, and enter
into three drives of the deflector 3.

The coordinator is one of the basic elements. The
principle of operation for such devices has been described
in many papers and it may vary widely. Thus, for
example, a displacement sensor has been described!”
with optoelectronics converter. It operates in a follow-
up mode and has a feedback to compensate for changes
in the focal spot shape and intensity. Another version is
a position-sensitive photodetector.

4. Directional shear interferometer

Shearing interferometer can be applied as a wave
front sensor. Harmonic phase modulation, two-wave
interference, and locked-in detection are used in this
interferometer. As compared with Hartmann sensor,
selection of optical waves having narrow spectral
distribution is possible in an interferometer. Since
interference pattern may be considered as a superposition
of coherent and incoherent constituents, a coherent
component with low spatial frequency is separated out
due to interference. It is useful for eliminating
background illumination, unpolarized radiation, and
high spatial frequencies. Laser radiation source quality,
photodetector, filters, and path length in the atmosphere
determine the selection efficiency.

Figure 6 presents a directional shear interferometer.
It is supposed that the light wave has properties of
spatiotemporal analytical signal (Eq.(10)). Unlike
known interferometers,!8:19 in the interferometer
considered direction of a shear is alternative and
coincides with the scanning direction along the aperture
under investigation. The scanning allows to bypass deep
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wave intensity attenuation along spatiotemporal
trajectory and to measure wave phase on this trajectory.

B cosot
t 6 — ‘— Ap(t)
(- 1 5
o 4 9 11
3 7 = I
— =] J o(t)
10
L 14
==
—| — I
-1 13

Fig. 6. Directional shear interferometer.

The sensor operates in the following way. Light 7
scattered by an object is converted by the input optics 2,
enters the interferometer where it is split into two beams.
A phase modulator 3 inserts harmonic modulation into
one of the beams. Another beam passes successively
through two elements 4 and 5 that shear the beam along
the orthogonal directions across the optical axis. Then,
being reflected from the mirror 6, this beam passes
elements 4 and 5 in the backward direction and is
superposed with the phase-modulated beam on the beam
splitter 3. In this case the spatiotemporal interference
pattern is formed that enters the scanning photodetector 7.

This interference pattern contains modulated
constituent in the form

A(x, y, t) cos[Ap(t) + B cosot]; Ae(t) =
= o[x(t) + Ax(), y(t) + Ay(2), t] — o[x(t), y(t), t], (16)

where B is the modulation coefficient; o is the circular
frequency of modulation; x and y are the spatial
coordinates in the photodetector plane 7; ¢ is time. The
signal amplitude A(¢, x, y) is proportional to modulus
of mutual coherence function. The phase difference A@(t)
in these channels will be identical to phase of the mutual
coherence function.

Time spectrum of constituent (16) contains lines at
the frequencies ® and 2o:

24(x, y, t) J1(B) sinAp(t) coswt,
24(x, y, t) Jo(B) cosAp(t) cos2ot, (17)

Amplitudes of these oscillations can be equalized
assuming that B ~ 2.65, because in the vicinity of this
point the Bessel functions are equal to each other,
J1(2.65) ~ J5 (2.65) ~ 0.45.

The photodetector 7 scans the interference pattern
and the signal from it enters selective filters 72 and 13,
for instance, synchronous detectors, for separating
out quadratures at the modulation frequency © and
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doubled frequency, respectively. The quadratures
2A(t) J1(B) sinA@(1), 2A(t) JH(B) cosAp(t) are sent from
the filter outputs to converter 74 that converts Cartesian
coordinates into polar ones. The converter can consist
of cathode-ray tube (CRT) with a slit mask and a
photodetector. When applying the quadratures to
orthogonal CRT inputs, phase fluctuations Ap(t) cause
azimuth displacements of the spot on the tube screen
whereas amplitude fluctuations A(¢) cause radial
displacements. An opaque mask with narrow radial slit
is placed on the tube screen. Light from the spot on the
screen is detected by a photodetector. This signal will
depend only on A@(¢) value that, by means of negative
feedback, sums up with harmonic phase modulation
signal b cosot in unit 76 and control displacement of
the phase modulator 3, returning the CRT spot to the
slit center. Thus, amplitude and phase modulation are
separated out.

Phase difference A@(¢) is proportional to the
derivative with respect to trajectory parameter, i.e.,

do/dt when displacement \/Ax2 + Ay? is rather small
and constant. This value is integrated over time by unit
15 and the wave phase ¢(¢) is formed at its output as a
function of time along the trajectory x = x(¢), y = y(¢).
Trajectory sweeps, when scanning photodetector 7, are
given as derivatives dx/d¢ and dy /d¢ in oscillators 70
and 77. In order to provide scanning that is adaptive to
wave intensity, feedback between units 70, 77, and
photodetector 7 is used in the aperture.

Conclusion

It is most likely that the optical vortices localized
around zero-intensity points just cause the disintegration
of a laser beam into separate filaments when propagating
through the atmosphere. The filaments absorb the main
beam energy; domains with low intensity where zero
points are located separate them. It is expedient to
remove these domains from an adaptive system channel.
In any case there is no need to measure phase there, it
is quite sufficient to determine position of these domains
in the aperture.

In the aperture plane the wave remains a continuous
function of two variables even when zero-intensity points
appear. The continuity results from the possibility of
introducing spatiotemporal analytical signal that is a
consequence of the narrow time and spatial spectra
connected with direction of wave propagation. The
structure of wave equation solution allows one to use
both spatial and temporal carriers simultaneously.

Zeros are singular points for phase as a calculated
value. Taking into account that zeros are located at
isolated points, one can make sections from zeros outside
the aperture. Within the simply connected domain
formed, it is possible to determine piecewise-smooth
trajectory that does not touch section, on which the
phase will be a continuous time function in scanning.
Since the trajectory is closed, phase will be uniquely
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determined on this trajectory. In this case wave
continuity on the trajectory is provided. The wave can
be extended over all apertures from the trajectory points,
excluding the section vicinity.

Now when phase is determined at a particular
aperture point, it can be fixed on the corresponding
element of an adaptive mirror. Mirror phased in such a
way will reconstruct a backward wave when a light
source is switched on. Particular scanning algorithms
can be realized using different methods and different
parameters, not obligatorily in time. Wave front scanning
sensors, which record a focal spot or a shear interference
pattern, can be useful for the development of the
element base.
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