722 Atmos. Oceanic Opt. /September 2002,/ Vol. 15, No. 9

A.V. Nikitin

Vibrational kinetic energy operator for the AB;-type molecules
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The vibrational kinetic energy operator is constructed for the ABj-type molecules in different
orthogonal nonsymmetrized and symmetrized coordinates. Different forms of the vibrational kinetic energy
operator are analyzed from the viewpoint of convenience of its use in solving the vibrational problem.

Introduction

Determination of the energy levels of pentatomic
molecules from the potential energy surface is now an
urgent problem of molecular spectroscopy.!=3 In contrast
to the cases of triatomic and tetratomic molecules, no
accurate calculations for pentatomic molecules have been
so far available. The accuracy of calculations of the
energy levels is still as low as 1 cm™!. Methane is the
simplest pentatomic molecule from the viewpoint of
making ab initio calculations. High symmetry of the
methane molecule allows the space of basis functions to
be decreased by several times. However, by now there
are no convenient internal coordinates to employ the
molecular symmetry most efficiently. Let us take the
following names for the systems of internal coordinates:
4R5Q, 4R30Q2T, 4RX2Q2T. In all the cases, 4R means
four radial coordinates ry, 7y, 73, 74 (see Fig. 1).
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Fig. 1. The 4RX2Q2T coordinate system (hydrogen atoms
1-4).

As angular coordinates, the system 4R5Q uses five angles
between mass-dependent coordinates: cos(qqy), cos(qq3),
cos(qy4), cos(gy3), and cos(ga4). The system 4R3Q2T
differs from 4R5Q in that the angles cos(gy3), cos(qa4)
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are replaced with the torsion angles ty3 and ¢y, in the
system, where the axis Z is directed along the coordinate
ry and 1, belongs to the plane XOZ. Definition of
the coordinate system 4RX2Q2T and symmetrized
coordinates is given below. Since the radial part is the
same for all the above systems of internal coordinates,
it is mentioned only once, when considering the system
4R5Q. Besides, all the off-diagonal radial-angular
coefficients of the g matrix are zero.

Mass-dependent orthogonal
coordinates

Assume that the Hamiltonian is constructed in the
internal mass-dependent coordinates:

4
T; :(rBi —rA)+0LZ(rBj -1),
=

where

1 l(1+417sz1’//2: 1—«/HA.
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Let us express, using the designations from Ref. 4, the
internal coordinates as follows

4
Fi :(rBi _rcm)+tnz(rBj _rcm) ’
j=1

4

1 1

—t Top =HATA + rg.
44m cm — HATA “'B]Z::‘B/

(p is the relative mass of an atom). In the mass-
dependent Cartesian coordinates r, the kinetic energy
operator has the orthogonal form

4
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Kinetic energy J = 0 in the internal
coordinates

Let us use the designations of Ref. 5:

1 3N-6 3N-6
Ty J(==h?)= Z Zh]—
2 m 6q]8qk 7
where
xyz N

aq Gy .
9= ZZ (axilj(axfkj‘
xyz N 62
N !

Thus, to find the kinetic energy operator in the
internal coordinates, it is sufficient to find the
coefficients g and 4. Then we will need some equations
for transformation of the coefficients ¢ and 4 at
transformation of the internal coordinates:

Gi :ZQM%%;

o 94k 041
. (1)
th oq; Zgz 0%qi
xS 99k

The 4R5Q coordinates

Using explicit equations for 7; and cos(g;;), through
the Cartesian coordinates, we can easily obtain the
following result. The radial coefficients are g¥ =8;;/ mj.
The angular diagonal coefficients of the g matrix are
equal to

2
sin?(q;;) ! ot ! 2W 5 9 .
mpr? m;r; J@ cos(q;;)

11

The angular off-diagonal coefficients of the g matrix
are nonzero with one coinciding index (ij)({k) in a
couple of angles q;;qy:

cos(q;)cos(q ) —COS(qi]' )COS(C]]'k )+ COS(qik ) «

g =
m]-rjz
o2
X
dcos(q;j) dcos(q )

and zero, if all the four indices are different. All the
off-diagonal radial-angular coefficients of the g matrix
are equal to zero. The radial coefficients hi = 2 /(m; r;),
i.e., the angular elements of the 2 matrix, are

=-2cos(q;;) L 9

hcos(qij) )
m.r? m].r],z aCOS((]ij)

i'i
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From the coordinates 4r5cos(g;;), using Eq. (1) we
can easily obtain the coefficients of the g and /# matrices
in the 4R3Q2T coordinates.

The 4RX2Q2T coordinates

Let the plane ZOX contain the points 7120 (see
Fig. 1). The axis OZ is directed normally, and the axis
OX is parallel to the straight line 72. The axis Z is
directed along the vector

A B
€ =0 "o

and the X axis is directed along the vector
27’1 27’2
As coordinates, take xy3 =y /2 and polar angles
of the third and fourth atoms:

cos(qZ3) = 1 {(r1r3) N (r2r3):|’
2r3cos(yn) | 7 7
cos(t3) = 1 {(r1r3)_(r2r3)}’
2rysin(yp) | 7 7

COS((]Z4): 1 |:(r1r4)+(r2r4):|’
2rycos(yo) | 7 7
COS(t4): 1 |:(r1l‘4)_(r21'4):|.
2rysin(yn) | 7 7

Let us use the designations

1 1 1 1
+ , m_= -

m, =
’ mrz mrz mrz mr2
171 272 171 272

and number the internal coordinates from 1 to 9 as
follows: r{, 7o, 73, 74, %12, 9Z3, t3, GZ4, t4. Then the
angular tensors g and . have the following forms:

‘(]SS zﬂ , g65 :—&COS(tg)y
4 4
2
6 M3 1 9 sin?(t3)
g% =—+-m, | cos*(t3) +——2>—|,
32 4 J{ c0s2(y(2)

= m_ .
973 :Tsln(tg )COt(qZS)’

gt =mT+sin(t3 Yeos(t3)cot(gZ3)tan? (3 15)+

m

+
4eos(y1p)sin(yy)

sin(t3),
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77 _ ms
732 sin?(qZ3)
2
+ 2 cot2(gZ3) sinz(t3)+L(t3) +
1 T
m, m_ cos(t3)cot(gZ3)

+ + b
4sin ()  2c0s(yq)sin(yz)

9% =-T=cos(ty),
4
ggszm—+ COS(tg)cos(t4)+M ,
4 cos?(x42)

_my

g% = i cot(gZs ){sin(t;; Yeos(t,) _w} .

cos® (x12)

m_sin(ty)
4cos(y15)sin(yq9)’

02
g88 :ﬂ+lm+ i:cos2(t4)+ sin?(t4) :i
4

2 2
v cos?(yq9)

g% =mfsin(t4 eot(gZ,),

9% =L+ cot(gz,) sin(t4)cos(t3)_w i
! cos® (31)
. m_sin(t3)
4eos(yq)sin(yy2)’

g7 :%cot(qZ3 Yeot(gZ ) %

cos(t3)cos(t4)}+ m,

4SiH2 (X12)

x[sm(t3)5m(t4)+ cos?(x12)

m

+ = [cos(ts)cot(gZs) +
4sin(yq5)cos(x o) 3 s

+cos(ty)cot(gZ)]1,

g% :m—gsin(uﬁ Yeos(t 4 )cot(gZ,tan? (y19) +

m

+ - sin(t,),
4cos(yq2)sin(yq) 4

99 M4 M ot2(qz,)x
r2sin?(qz;) 4 4

2
cos=(t,) L
4sin? (y4)

s 02
x| sin® (¢, )+
{ P c0s? (x12)

m_cos(ty)cot(gZ,)
2COS(X12 )SiH(X12) ’

A.V. Nikitin

PERLN [2cos2 (X12)—1]_ m_cot(2y49)

~sin(yp)cos(y1n) 2 ’
16 :&cot(q23){sin2(t3)+w}+
4 cos?(y(2)
+%tan(X12 )cos(t3),
m. sin(t3)cos(t3)tan® (y49)[1+cos2(gZ3)] ~

K =

4sin%(gZ3)

_m_sin(t3)tan(y9)cot(gZ3)

2 ’
cos2(t,) }
2— +

cos”(x12)

l’l8 :m—gCOt((]Z4)|:SiD2 (t4 ) +

+m7_tan(x12)cos(t4),

m, sin(t,)cos(t,)tan2 (x5 [1+cos2(gZ,)] B

19 =
4sin®(qZ4)

_m_sin(t)tan(y9)cot(qZ,)
2

Symmetrized coordinates
Define the symmetrized coordinates as follows®:

1
Sk, :E[ZCOS(CIQ )—cos(qy3) —cos(qs) -

—c08(q3) —cos(gy ) +2cos(g34) 1,

Sk, :%[cos(qﬁ ) —cos(qy4) —cos(gq3) +cos(gyy)],
1

SF2x = ﬁ[cos(qM)—COS((hB)]’

1
SF2y :E[cos(ng)—COS(QM)]’

L

SF ﬁ[COS(%D—COS(qu)]-

2z

The Kkinetic energy operator in the symmetrized
coordinates can be derived in several ways. The main
difficulty in this case is too complicated dependence of
the cosine of the sixth coordinate, for example cos(q34),
on the rest five angles.! We can overcome this
complexity by using, for example, the tensor ¢ in the
coordinates 4R3Q2T and parameterizing the symmetrized
coordinates through the 3¢2t¢ coordinates. Let us use, in
what follows a simpler approach.

It should be noted that the symmetrized coordinates
Ep,  Fy,, and Fy, are independent of ¢34, and,
consequently, the g and /% tensors for these coordinates
can be obtained from the g and /% tensors in the 4R5Q
coordinates by Eqs. (1). For the AB; molecules, all the
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five coordinates are transformed differently, therefore g¥
and #/ can correspondingly be presented as tensors of
the first and second rank transformable as S;S; and S;.

Taking the symmetry properties into account, we
can easily find g% and &/ for the coordinates E, and

Fy,.

Below, we will use definitions from Ref. 7, in
particular, permutation (234) = (23)(24). For example,
using 4%, we can obtain Az = (234) h* and kY = (234) hz:

[ i cos(qq3)— 1 cos(qa4),
mr?  mgr? myr?  mr?
1 1 1 1
hY = + cos(q4) - cos(qy3),
77’11 7’12 77147’42 mzrzz m37’32
1 1 1 1
h? = 5 + > COS((hz)— > 2 COS(C]34)7
myry Myt Mgy Myt
LEs :COS((]14)—COS(6713)+C05(6723)—COS(C/24)+

2 2
myry myry

n cos(qy4) —cos(qyy) n cos(gy3) —cos(qy3)

2 2
msr3 mr

From the equation

E, —l[ E, 1 Eb:|
h _J§ (234)h +2h

we can obtain AP, Similarly, we can construct the g
matrix in the symmetrized coordinates. Calculation of
the 3x3 g matrix for the coordinates Ej, Fy,, Fy, is
trivial. The rest elements of the symmetric g matrix can
be calculated in series using the permutation operators:

gzz =(234)gxx , gxz :(234)gy1 , gyz =(234)gxy ,

g = 2[(234) +(243) - 1} g%,
3 2

2 3 1

b bb aa bb

g®” = [(234)9 -——9 " -9 ]
3 4 4

2 1 e (2)
ax _ _“_ (234) by .~ b,x:|’
g ﬁ[ g +29

g =2(243)g** +~3g%
g% =(243)(—£gby —1gay}
2 2

By Eq. (1) from the 4R5Q coordinates, we derive:
b =

- L 12-cos2(gy3) - cos?(gy) -
myry

—cos(q34) +cos(qq3)cos(q4) ]+

1
2
4m272

+ [2—cos2(qgy3) —cos?(gay) -

—cos(q34)+cos(gyz)cos(gqos) 1+

+

4 1 S12-cos?(q13) —cos* (g23) -
msrs
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—cos(qy9) +cos(gy3)cos(ga3) 1+

+ [2—cos? (C]14)—COS2 (q24) -

2
dmr;
—cos(gqy) +cos(qg4)cos(gay)],

V2
gbx — >
4m1 7

[-1+cos?(qq3) +cos(qs4) -

[1-cos?(gaq) -

—COS((]13 )COS((]14)]+

J2
’”2’22
—co0s(q34 ) +cos(goz)cos(qas) 1+

V2

2
4771373

[~1+cos?(qy3) +cos(qqy) -

[1-cos?(ga4) -

—cos(qq3)cos(go3) 1+
4m4r42

—COS(Q12)+COS(C]14 )COS(C]24)]y
V2
2

4m1 r{

g™ = [1-cos?(qy4) —cos(gzg) -

[~1+c0s2(qg93) +cos(q3,) -

—cos(qy3)cos(qys) ]+

V2
2

myry

2 5 [~1-cos?(qy3) +cos(qy) -

—cos(gaz)cos(gqy) 1+
dmyrs

—cos(qy3)cos(gaz) 1+ [1-cos?(qq4) -

2
dmrg

—c0s(qy9) +cos(qy4)cos(gay)],

g = cos(q34) —cos(qq3)cos(qq4) .

2
2my 7

, 08(a5)=cos(ga)c08(q,) |

2
2m272

N cos(qy3)cos(gy3) —cos(qyy) "

2
2m373

n cos(qy4)cos(gyq) —cos(qyy)

1 1
+ +
3 "24’42

2
2m474

gy :%Sin2 (6]14 )(

myr
myry mgr3

Using permutations of six g elements we can easily
obtain all 15 elements of the g matrix, for example:
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2

g”:(234)g”=lsin2(q12) LR S
2 my 1 myry

2
m3r3 77141’4

1. 1 1

+§sm2(q34)( -t ]

Expressing six angles cos(g;;) through five
symmetrized coordinates S and the sixth coordinate

1
Sy, = ﬁ[cos((hz) +cos(qq3) +cos(qy) +

+cos(gq3) + cos(gqy) + cos(gzy) ],

we obtain ¢g¥ as a quadratic form of the six
symmetrized coordinates. It is an important property of
thus obtained kinetic energy that it has no singularities.

Conclusion

The equations presented for the kinetic energy
operator are planned to be used for determination of the
energy levels of the methane molecule. Different systems
of the internal coordinates differ by the degree they make
use of the symmetry and by complications of the integral
calculations.

The efficiency of making use of the symmetry in
solving the angular problem can be understood in the
following example. The use of the permutation (34) in
the coordinates 3Q2T allows the space of wave
functions to be divided into the subspaces of symmetric
and antisymmetric (about the permutation (34)) wave
functions.

A.V. Nikitin

In the X2Q2T coordinates, the space of wave
functions breaks into four subspaces by permutations.
From the viewpoint of the symmetry use, the coordinates
described in Ref. 2 are twice as efficient as the X2Q2T
coordinates. The symmetrized coordinates use the
symmetry completely.

It should be noted that the higher is the symmetry
of the internal coordinates, the more compact is usually
the PES representation. The main problem arising in using
the symmetrized coordinates is the need for applying
approximate integration. Nevertheless, in my opinion,
the use of the symmetrized coordinates is promising.
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