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Matrix elements of the effective dipole moment operator are determined for the XY, molecules of

Cyy symmetry group. Contributions from rotational operators proportional to J, operators to the third

power are taken into account.

Solution of almost any problem of atmospheric
optics requires, to that or other degree, knowledge of
the precision with which quantitative characteristics of
absorption spectra of atmospheric gases and pollutants
are known. This information, in its turn, can be
obtained from high-accuracy calculations of the
parameters (positions and intensities) of rovibrational
spectral lines of the corresponding molecules. In recent
years, because of the considerable progress achieved in
the experimental technology (in particular, appearance
of high-accuracy laser spectrometers and Fourier
transform spectrometers), the measurement accuracy in
intensity of isolated rovibrational lines has been
increased by orders of magnitude. This fact necessitates
improvement and modification of theoretical equations
used for description of molecular spectra with the
allowance for finer, than earlier, effects. This paper is
just devoted to such a refinement of equations
describing the intensities of rovibrational lines of XY,
molecules of C,, symmetry group (this class of
molecules includes, in particular, water vapor HyO).

The general equation for the intensity of a
rovibrational line (see, for example, Ref. 1) has the
following form:
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In Eq. (1), T and N are, respectively, the medium
temperature and the number of gas molecules in a unit
volume (the latter can be related to pressure); o and Ey4
are the transition frequency and the energy of the lower
quantum state that are assumed known from solution of
the Schrédinger equation for a free molecule; g4 and
Z(T) are the statistical weight and the partition
function! that are also assumed known. Thus, the main
problem is calculation of matrix elements of the dipole
moment operator (a|p, | b).
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It should be noted that rigorous solution of this
problem, that is, calculation of the matrix elements
(a |, | by, is impossible, because there is no exact solution
to the Schrodinger equation with the rotational-
vibrational molecular Hamiltonian. Therefore, some
approximate methods are applied in molecular
spectroscopy. One of such methods is the method of
effective operators2:3 based on the operator perturbation
theory. This method allows correct description of some
or other groups of rotation-vibration states and
quantum transitions. It can be shown! that within the
framework of this method the matrix element (a|u,|b)
of the dipole moment operator (now the effective dipole
moment operator describing transitions between any
rotational states of a selected pair of vibrational states
or groups of resonant vibrational states) should have
the following form:
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where Y. Y C}/KFUKF) are the eigenfunctions of one
VeA K
group of resonant rotation-vibration states (for example,
the initial states of the transition), Y D, C}/«Krp|] 'K'T")
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are the eigenfunctions of another group (for example,
the final states of the transition). Here |JKT) are the
basis rotation-vibration functions, which are usually
taken in the form of the Wang basis for asymmetric top
moleculest:
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where | JK) are ordinary rotational functions,®> and the
symmetry I' depends on the parity of the quantum
number K and the sign in the right-hand side of

Eq. (3); C}/Kr are the numerical factors that are
determined from solution of the Schrédinger equation
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for a free molecule, and VV'u, are effective dipole
moment operators connected with pairs of vibrational
states | V) and | V).

Finally, the problem of calculation of the matrix
elements (JKT|VV',| J’K'T"y reduces to construction of

the correct operator VV'u, in the form of the
corresponding sums of rotational operators of different
order of smallness

YV = V) (VI E VYV A, (4)
J

and following the determination of matrix elements of

these operators on the functions |Jk), where k =+ K

and —J <k <J.

For XY; molecules of the Cy, symmetry group,
whose vibrational states can have only A{ or Bj
symmetry, the corresponding results for both the
possible operators A; proportional to the components J,
of the total angular momentum operator to the first and
second power and the corresponding matrix elements
were presented in Ref. 1. In this paper, we present the
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corresponding  results for the operators y

proportional to the operators J, to the third power.

The question on what
contribute to VV'n, depending on the symmetry of the
functions | V) and | V') can be answered most easily
using the symmetry properties of a molecule. For XY,
molecules of the C,, symmetry group, the J, operators
transform as follows: J, € Ay, J, € By, J, € By. The
elements of the direction cosine matrix ¢y = kg
(hereinafter we follow the designations of Ref. 1), in
their turn, transform as ¢, € Ay, ¢, € By, ¢, € By.
Taking this into account, we can show that only the
combinations of the J, rotational operators to the third

rotational operators

power that are presented in Tables1 and 2 can

contribute to the reduced dipole moment VV'p,.

The values of nonzero matrix elements are given in
the last columns of these Tables. The designations in
Tables 1 and 2 correspond to that used in Ref. 1.

Table 1. Perpendicular band
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Table 2. Parallel band
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