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Relationships connecting parameters of the state of a medium under study (visibility) and 

parameters of the bistatic sensing scheme (the distance between receivers and sources of radiation), as 
well as the distance to the layers studied are obtained. It is found how the minimum spatial resolution is 
connected with the optical characteristics of the medium and the error of measurement equipment. The 
obtained equations can be helpful when choosing parameters of a bistatic tomographic sensing scheme for 
particular meteorological and hydrological situations. 

 
Real-time monitoring of pollution in the 

environment (atmosphere, water media) is most 
successful when conducted from onboard an airplane 
(for the atmosphere) or helicopter (for a water 
medium). Tomographic sensing methods are preferable 
in this case, because they, unlike traditional schemes of 
remote laser sensing, require no additional a priori 
information about the functional relationship between 
optical characteristics (scattering and backscattering 
coefficients) and their spatial structure. 

However, the central point of the proposed 
schemes of tomographic sensing 

1$3 is calculation of the 
logarithmic derivatives of scattering signals. Taking 
into account that the actual experimental information 
usually has a discrete character and numerical 
differentiation of the recorded signals is an ill-posed 
problem, we can believe that practical realization of 
these methods is inefficient because even small 
measurement errors may lead to large errors in the 
optical characteristics reconstructed. 

4 
In Ref. 5, we considered a bistatic scheme of 

tomographic sensing, which does not require calculation 
of logarithmic derivatives of recorded signals and is 
stable to various interfering factors both in 
emitting/receiving and recording units and in the 
environment, as well as to the contribution of multiple 
scattering. It was shown that the error in determination 
of optical characteristics (extinction coefficient ε) 
depends practically only on the error in the recorded 
signals. However, it seems apparently urgent to 
consider the relationship between the parameters of a 
scattering medium that characterize its state (for 
example, meteorological visibility range Sm = 3.9/ε), 
the spatial resolution, and parameters of the measuring 
system (accuracy, size, etc.), since the environment can 
take various states, while the size of carriers of the 
measurement equipment is limited. 

For the considered bistatic sensing scheme, 

5 let us 
first derive the equation connecting the spatial 
resolution L with the instrumental error and the state 

of the environment (cloudless atmosphere, haze, fog, 
cloud, water medium, etc.) characterized by the 
meteorological visibility range Sm. The spatial 
resolution L here is the length of the sensing path 
inside the studied volume, at which the difference in 
the recorded signals is sufficient for these signals to be 
considered as different, that is, exceeding the 
measurement error. It is assumed that the absolute 
measurement error of backscattered signals ∆ cannot 
exceed the half-difference of the recorded signals S(Ri) 
for two positions of the sensing pulse (∆ < ∆S/2), 
where ∆ = S(Ri) $ Str, Str is the true value of a signal, 
∆S = S(Ri) $ S(Ri+1). This inequality is the condition 
of the maximum permissible error of signal 
measurement. 

The recorded signals S(R) are described by the 
optical radar equation, having the following form:  

 S(Ri, rj, Rk) = Ai Ak βϕl(rj) T(Ri, rj) T(Rk, rj), 

where 

 T(Ri, rj) = exp 
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 ε(r) dr  ,  
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Ai and Ak are, respectively, the instrumental constants 
of sources and receivers (i = 1, 2; k = 3, 4); rj are the 
points the scattered signal comes from (j = 1, 2, 3, 4); 
βϕl(rj) are the coefficients of scattering at the angle ϕl 
at the point rj (l = 1, 2). The fact that the index l 
takes two values indicates that we consider a particular 
case of symmetric sensing scheme, for which ϕ1 = ϕ2, 
since this case reflects all the regularities of the 
relationship of analyzed parameters that are inherent in 
the general scheme and simplifies the analysis. 
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Assuming that the signals S(R1, r1, R3) and 
S(R2, r4, R4) coming to the receiver from the points r1 
and r4 correspond to the ith reference level and the 
signals S(R1, r3, R4) and S(R2, r2, R3) coming from 
the points r3 and r2, correspond to the (i + 1)th level, 
the signal difference ∆S can be  represented  as  follows: 

 ∆S = S(R1, r1, R3) $ S(R2, r2, R3). (1) 

The absolute error of signal measurement ∆ = 
= δSi S(Ri), where δSi is the error of measurement of 
the signal S(Ri), equals  

 ∆ = δ[S(R1, r1, R3)] S(R1, r1, R3). (2) 

Substituting Eqs. (1) and (2) into the inequality 
∆ < ∆S/2, we can write 

 δ[S(R1, r1, R3)] S(R1, r1, R3) < 

 < 0.5 [S(R1, r1, R3) $ S(R2, r2, R3)], 

or 

 2δ[S(R1, r1, R3)] < 1 $ 
S(R2, r2, R3)

S(R1, r1, R3)
 . 

Then, taking into account the lidar equation, we obtain 
(assuming T(R2, r4)/T(R1, r1) ≈ 1, what is true for 
almost all atmospheric situations because [R2, r4] and 
[R1, r1] are equal): 

 2δ[S(R1, r1, R3)] < 1 $ 
βϕ2(r1)

βϕ1(r1)
 T(r1, r2) T(r4, r2). 

For the close reference levels meeting the 
condition of quasi-homogeneity [βϕ1(r1) ≈ βϕ2(r2)]: 

 2δ[S(R1,r1,R3)] < 1 $ exp [$ ε r2 $ r1 ] exp [$ ε r2 $ r4 ] 

or  

 exp [$ε̄ L/2] < 1 $ 2δ[S(R1, r1, R3)], (3) 

where 

 L =  r2 $ r1 + r2 $ r4 + r3 $ r4 + r3 $ r1 = 

 = 2 [ r2 $ r1 + r2 $ r4 ]. 

From Eq. (3), taking into account that 
Sm = 3.9/ε, we finally obtain  

 Lmin > $ 
2 ln (1 $ 2δS)

3.9  Sm. (4) 

The obtained inequality represents the dependence 
between the minimum  spatial resolution L, the error of 
signal measurement δS, and the state of the scattering 
medium Sm. Thus, knowing the capabilities of the 
measuring instrumentation, we can set the minimum  
spatial resolution for different states of the studied 
medium. 

When deriving Eq. (4), it was assumed that the 
absolute error of signal measurement ∆ does not exceed 
the half-difference ∆S of the signals coming from two 

neighboring points of the medium, that is, the error of 
measurement of the backscattered signals should not 
exceed 50%. Otherwise, a physically absurd result may 
be obtained (for example, the atmospheric 
transmittance higher than unity or the negative 
extinction coefficient). This relationship allows us to 
select the minimum path length L for sounding 
radiation inside the studied volume, at which the signal 
extinction exceeds the measurement error. At δS > 50% 
it would make no sense to apply the algorithm (4), 
since at such errors it is inefficient (this condition was 
initially taken into account in the efficiency  
criterion (4)). 

Analysis of the results of studying the spectral 
transmittance and scattering phase matrices in the 
surface atmospheric layer reveals several qualitatively 
different types of the optical state of the atmosphere: 
clouds and fog Sm < 1 km, mist 1 km ≤ Sm ≤ 3 km, and 
haze Sm > 3 km. The extinction coefficient ε is  
0.1$0.15 m$1 for the surface water of the World Ocean, 
0.05$0.1 m$1 for the deep water, and up to 3.5 m$1 for 
shoaling water. 

6 
The results of calculation of the minimum  spatial 

resolution for different scattering media are shown in 
Figs. 1 and 2. 

 

 
Fig. 1. Calculated minimum  spatial resolution for haze. 

 
It can be seen that L strongly depends on the 

measurement accuracy. If the spatial resolution of 
several meters is used for smokes from smoke stacks of 
industrial enterprises and fogs at the instrumental error 
δS = 2%, then for haze the resolution should be about 
tens of meters (see Fig. 1). 

For water media, as follows from analysis of 
Fig. 2, the minimum spatial resolution may achieve 
several centimeters. 
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Fig. 2. Calculated minimum spatial resolution for water 
medium. 

 

Let us derive now the relationship of the distance 
to the studied object with the size of the measurement 
system, measurement error, and the state of the 
scattering medium. 

We use the geometry of the sensing scheme from 
Ref. 5 and the following equation: 

 L =  r2 $ r1 + r2 $ r4 + r3 $ r4 + r3 $ r1 . 

Consider a triangle with vertices at the points R1, 
r1, and R3: 

 tan α =  r1 $ R3 / R3 $ R1 = d/∆1, (5) 

and a triangle with vertices at the points r1, r3, and r4: 

 tan α =  r3 $ r4 / r1 $ r4 =  r3 $ r4 /∆2; 

  r2 $ r4 = r3 $ r1 = 
∆2

cos α . (6) 

Taking into account Eqs. (5) and (6), we can 
easily obtain  

  r2 $ r1 = r3 $ r4 = d 
∆2

∆1
 . (7) 

Based on Eqs. (6) and (7), the equation for L has 
the following form: 

 L = 2 








d 
∆2

∆1
 + 

∆2

cos α  . 

With allowance for Eq. (4) and the trigonometric 

equation cos(arctan x) = 
1

1 + x2
, we finally have for 

the distance d to the scattering volume studied 

 d > 0.5 ∆1 





 
Lmin

2∆2
 $ 

2∆2

Lmin
  . (8) 

The obtained equation (8) allows us, for a given 
Lmin with the allowance for the parameters of the 
sensing scheme (given distance between the receivers 
(∆2) and source and receiver (∆1)) to determine the 
distance to the studied volume, at which it is possible 

to find the optical characteristics of the volume with 
the given measurement error (δS) and the state of the 
medium (Sm). 

Let us analyze the limiting cases in Eq. (8). At 
Lmin = 2∆2, d = 0. This means that the path passed by 
the sounding pulse is equal to the distance between the 
receivers. In this case, sensing pulses should apparently 
be emitted in the opposite direction along the straight 
line connecting these receivers. Then usually ∆1 = 0 as 
well, that is, sources and receivers should be set at the 
same points. The sensing scheme with sensing pulses 
emitted in the opposite direction was considered in 
Ref. 7. At ∆2 → 0 (close receivers) d → ∞. This means 
that the given value of Lmin will be achieved in the 
positive half-plane at infinity. If L → 0, then d → $∞. 
The physical meaning of this result is that the given 
small value Lmin → 0 in the positive half-plane will be 
achieved with the sensing pulse emitted from the 
negative half-plane. It can be concluded from the above- 
said that to obtain Lmin = 2∆2 at a given ∆2, we cannot 
consider arbitrarily  small  values of Lmin (less than ∆2). 

Analysis of the results on d calculated by Eq. (8) 
that are given in Table 1 suggests that to obtain the 
correct results (assuming fulfillment of Eq. (4)) at the 
given parameters of the sensing scheme (∆2, ∆1) and the 
state of the object under study (Sm), as the 
measurement error δS increases, the distance d to the 
studied volume should be increased. 

For water scattering media (ε ∼  0.01$1 m$1), the 
values of d at ∆2 equal to units or tens of centimeters 
are much smaller, since Sm and, correspondingly, Lmin 
for such media are two to three orders of magnitude 
smaller than those in the atmosphere. 

The following question may arise: what separation 
between the source and receiver (∆1) is needed to 
measure optical characteristics of the given volume (Sm) 
being at the distance d with the given measurement error 
δS at the separation ∆2 between the receivers? To solve 
this problem, we use Eq. (8). After transformations, the 
solution for ∆1 takes the following form: 

 ∆1 ≤ 4 
∆2 Lmin

L2
min $ 4∆2

2
 d. (9) 

This means that to measure the characteristics of a 
volume being at the distance d with the given error 
(δS) and the separation between the receivers (∆2), the 
maximum separation ∆1 between the radiation sources 
and receivers can be determined by Eq. (9). It should 
be noted that Eq. (9) is valid only under the condition 
2∆2 ≤ Lmin. Otherwise (at Lmin < 2∆2), no limits are 
imposed on ∆1. 

It follows from Eq. (9) that at 2∆2 = Lmin 
(sensing pulses emitted along the opposite directions) 
the distance ∆1 between the emitting/receiving devices 
is principally unlimited (∆1 → ∞), although in practice, 
because of the finite parameters of the 
emitting/receiving devices (energy, sensitivity, etc.) 
and the presence of background radiation and noise, ∆1 
cannot be infinitely long. Values of ∆1 calculated by 
Eq. (9) are given in Table 2. 
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Table 1. Calculated distance to the object of study at the given parameters of the sensing scheme, measurement error, and the 
state of the medium 

δS = 0.5%, Sm = 20 km 
 ∆1 = 1 m ∆1 = 5 m 

 ∆2 = 1 m ∆2 = 3 m ∆2 = 5 m ∆2 = 3 m ∆2 = 5 m ∆2 = 10 m 

d ≥ 25.8 m 8.6 m 5.1 m 42.8 m 25.5 m 12.4 m 
δS = 3%, Sm = 20 km 

 ∆1 = 1 m ∆1 = 5 m 

 ∆2 = 1 m ∆2 = 3 m ∆2 = 5 m ∆2 = 3 m ∆2 = 5 m ∆2 = 10 m 

d ≥ 158.7 m 52.9 m 31.7 m 264.4 m 158.6 m 79.2 m 
δS = 0.5%, ε = 0.05 m$1 

 ∆2 = 0.1 m ∆2 = 0.2 m 

 ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m 

d ≥ 0.08 m 0.23 m 0.38 m 0.0005 m 0.002 m 0.003 m 
δS = 3%, ε = 0.05 m$1 

 ∆2 = 0.1 m ∆2 = 0.2 m 

 ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m 

d≥ 0.62 m 1.84 m 3.07 m 0.19 m 0.58 m 0.97 m 
δS = 0.5%, ε = 0.1 m$1 

 ∆2 = 0.1 m ∆2 = 0.05 m 

 ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m ∆1 = 0.05 m ∆1 = 0.1 m ∆1 = 0.2 m 

d≥ 0.0005 m 0.002 m 0.003 m 0.038 m 0.076 m 0.15 m 
δS = 3%, ε = 0.1 m$1 

 ∆2 = 0.1 m ∆2 = 0.2 m 

 ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m ∆1 = 0.1 m ∆1 = 0.3 m ∆1 = 0.5 m 

d≥ 0.30 m 0.90 m 1.51 m 0.14 m 0.42 m 0.69 m 
 

Table 2. Calculated source/receiver separation at the given 
distance to the object under study, measurement error, and 

the state of the medium 

δS = 0.5%, Sm = 39 km 

 d = 500 m d = 3000 m 
 ∆2 = 1 m ∆2 = 5 m ∆2 = 1 m ∆2 = 5 m 

∆1 ≤ 9.95 m 49.87 m 59.71 m 299.23 m 

δS = 3%, Sm = 39 km 

 d = 500 m d = 3000 m 
 ∆2 = 1 m ∆2 = 5 m ∆2 = 1m ∆2 = 5 m 

∆1 ≤ 1.62 m 8.08 m 9.69 m 48.49 m 

δS = 0.5%, Sm = 20 km 

 d = 500 m d = 3000 m 
 ∆2 = 1 m ∆2 = 5 m ∆2 = 1 m ∆2 = 5 m 

∆1 ≤ 19.41 m 97.93 m 116.46 m 587.6 m 

δS = 3%, Sm = 20 km 

 d = 500 m d = 3000 m 
 ∆2 = 1 m ∆2 = 5 m ∆2 = 1 m ∆2 = 5 m 

∆1 ≤ 3.15 m 15.76 m 18.91 m 94.57 m 

 
The calculated results on the separation between 

the sources and receivers ∆1 by Eq. (9) at the given 
parameters of the sensing scheme ∆2 and the distance to 
the object of sensing indicate that, on the one hand, to 
achieve the minimum spatial resolution with the 
increasing measurement error δS, the separation ∆1 
should be decreased (at Sm = const) and, on the other  
 

hand, at the constant level of the error δS with the 
decreasing meteorological visibility range (Sm), ∆1 
should be increased. 

Thus, we have derived the relationships between 
the parameters of the tomographic sensing scheme 
(separation between the source and receiver ∆1, 
separation between the receivers ∆2), the distance to 
the object of sensing d, the measurement error δS, and 
the state of the medium under study (Sm). The 
obtained relationships allow one to specify the 
parameters of the sensing scheme in almost any 
experimental situation. 

 

References 
 

1. M.M. Kugeiko, œMethod for determination of optical 
characteristics of scattering media,B USSR Inventor’s 
Certificate No. 1798664, ICI G01W1/00. 
2. V.V. Veretennikov, Atm. Opt. 4, No. 6, 462$469 (1991). 
3. M.M. Kugeiko, Issled. Zemli iz Kosmosa, No. 1, 42$45 
(2000). 
4. A.M. Tikhonov and V.Ya. Arsenin, Methods for Solution of 
Ill-Posed Problems (Nauka, Moscow, 1979), 286 pp. 
5. M.M. Kugeiko and D.M. Onoshko, Atmos. Oceanic Opt. 
11, No. 12, 1147$1149 (1998). 
6. V.A. Volokhtyuk, V.M. Kochetkov, and R.R. Krasovskii, 
Problems of Optical Radar (Sov. Radio, Moscow, 1972), 
256 pp. 
7. V.A. Firago and M.M. Kugeiko, in: Proceedings of the III 
Conference on Laser Physics and Optoelectronics (Minsk, 
1997), pp. 314$317. 


