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A new method is proposed to allow for the refraction in the equation of radiation transfer 
through the atmosphere. The method is based on deformation of the spherical coordinate system in 
accordance with the spatial distribution of the refractive index. It is shown that in the deformed 
coordinate system the differential operator of the transfer equation that allows for the refraction takes a 
simpler form corresponding to the rectilinear propagation of light and contains no refraction terms. The 
result obtained simplifies formulation of the problems of the radiation transfer theory for a refractive 
spherical atmosphere. 

 

Introduction 
 

To study the scattered solar radiation, atmospheric 
optics usually uses the model of the planetary 
atmosphere as a plane layer illuminated by parallel rays 
and limited by a reflecting surface from the bottom. 
However, in many problems, radiation scattering in the 
atmosphere should be considered with the allowance for 
the atmospheric sphericity and the effect of ray bending 
due to refraction. At rigorous consideration of the 
refraction in a spherical atmosphere, calculated results 
may significantly differ from that obtained assuming 
rectilinear propagation of light. 

1 
The theory of refraction 

2 is based on the 
differential equation of refraction describing the change 
in the direction of a ray propagating in a medium with 
a variable refractive index. Therefore, the radiative 
transfer equation (RTE) becomes more complicated 
when considering light propagation in a spherical 
atmosphere. 

1 Thus, a question naturally arises on 
whether or not the RTE can be reduced to a simpler 
form corresponding to the rectilinear propagation of 
rays. In this paper, we give an affirmative answer to 
this question and justify this possibility.  

 
Analysis of RTE structure when 

considering refraction in a spherical 
atmosphere  

 
In a spherical coordinate system with the axis OZ 

directed toward local zenith, the radiative transfer 
equation accounting for the refraction can be presented 
in the following form 

1: 
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It differs from the corresponding equation on the 
assumption of rectilinear light propagation 

3 by the 
refraction factor (1 $ r/rc), the function B/n2, and 
the function I/n2 corresponding to variation of the 
intensity I along the ray in the medium with the 
variable refractive index n = n(r). The value of I/n2 
follows from the law of conservation for the light beam 
as a ray tube. 

4 In a homogeneous medium at n = const, 
the invariant I/n2 turns into I. At the solar 
illumination under conditions of the axial symmetry, 
the intensity I(r, ψ, ϑ, ϕ) is a function of coordinates 
of the point r(r, ψ) and the direction s(ϑ, ϕ), where r 
and ψ are, respectively, the radius and the polar angle 
determining the point’s position; ϑ and ϕ are the polar 
and azimuth angles of the vector of beam direction. In 
Eq. (1) B is the source function; ε is the extinction 
coefficient of the medium; the refraction caused 
curvature of the ray 1/rc (rc is the length of curvature) 
is expressed through the logarithmic derivative of the 
vertical profile of the refractive index with respect to r: 

 n
rr

ln1

c ∂
∂−= . (2) 

The deviation of the factor (1 $ r/rc) from unity 
characterizes the effect of refraction. In the surface 
atmospheric layer, the refraction effect is marked:  
(1 $ r/rc) = 0.77 (Ref. 1).  

Let us derive the equation for the differential 
operator of RTE (1), analyze its structure, and find 
what parameters determine every its component. As 
known, the differential RTE operator can be written in 
the coordinateless form as a scalar product (s, ∇ I) of 
the vector of ray direction and the intensity gradient. 
To specify the point’s position P(r) in a spherical 
atmosphere, the spherical system of coordinates 
(r, ψ, φ) with the origin at the center of a planet, 
where φ is the azimuth angle, is used. The spherical 
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system of coordinates is considered as a particular case 
of a curvilinear system {uk, k = 1, 2, 3}: u1 = r, u2 = ψ, 
u3 = φ. The direction vector s is described by the 
spherical coordinates (ρ, ϑ, ϕ). At the first stage of 
transformations, we assume that the vector length 
ρ ≠ 1. 

The gradient ∇ I of the intensity field I = I(r, s) = 
= I(r, ψ, φ, ϑ, ϕ, ρ) in the (generalized) six-
dimensional phase space can be written as 

5: 
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where Hk are the Lame coefficients determining the 
curvature of the coordinate lines uk; ek is the basis of 
orthogonal unit vectors. The Lame coefficients for the 
spherical system of coordinates are 

6: 

 Hr = 1, Hψ = r, Hφ = r sinψ. (4) 

The peculiarity of the spherical coordinate system 
complicating the consideration is that, unlike the 
Cartesian coordinate system, the orientation of the basis 
of unit vectors {er, eψ, eφ} in the spherical system 
depends on the point’s position P in space. Let us show 
that at every point P the transition {eX, eY, eZ} → 
→ {er, eψ, eφ} from the basis of unit vectors of the 
Cartesian coordinate system to the basis corresponding 
to the spherical coordinates with the local zenith can be 

made by applying the transformation Â = M̂ Ĝ. The 

matrix M̂ can be expressed through the Lame 
coefficients Hr, Hψ, Hφ and partial derivatives of the 
Cartesian coordinates X = r sinψ cosφ, Y = r sinψ sinφ, 
Z = r cosψ as  
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The matrix Ĝ describes the orthogonal 

transformation Ĝ(φ, ψ) = T̂Z(φ) T̂Y(ψ) corresponding 
to turns about the axes OZ and OY through the angles 
φ and ψ (Ref. 7): 

 Ĝ(φ, ψ) =












ψψ−

ψψ












φφ
φ−φ

=
cos0sin

010
sin0cos

100
0cossin
0sincos

 

 .
cos0sin

sinsincossincos
cossinsincoscos













ψψ−
φψφφψ
φψφ−φψ

=  (6) 

As a result, we have an orthogonal matrix 

 Â = M̂ Ĝ
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which allows us to find the coordinates ak of the 

direction vector ∑
=

=
3

1k

kka es  in the basis {er, eψ, eφ} of 

spherical coordinates. Actually, the spherical 
coordinates ak are linearly related to the Cartesian 
coordinates x = ρ sinϑ cosϕ, y = ρ sinϑ cosϕ, z = ρ cosϑ 

through the transformation matrix Â (7): 
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After scalar multiplication of the vector s (8) by 
the vector ∇ I (3), we find the equation for the 
differential RTE operator in the curvilinear coordinates: 
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Equation (9) includes unknown partial derivatives 

kkk uuu ∂
ρ∂

∂
ϕ∂

∂
ϑ∂ , ,  of the direction vector with respect to 

the curvilinear coordinates.  
Let us analyze now the structure of fields formed 

by the partial derivatives. To find them, we used the 
results of Ref. 5. Take into account that the 
differentiation operator in the curvilinear coordinates 
acts not only on the components ai of the vector, but 
also on the basis vectors ei:  
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Substitution of the well known equation 

5 
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into Eq. (10) and calculation of the scalar products 
(ok, ej), j = 1, 2, 3, with the allowance for the fact 
that the basis is orthonormal (ei, ej) = δij, where δij is 
the Kronecker delta, yields the equation  

 
∂a
∂uk

 = Q̂k a + fk = Q̂k Â x + fk.  (12) 

Here Q̂k are antisymmetric matrices; a = Â x; 
a = (ar, aψ, aφ)T, x = (x, y, z)T, fk = (oke1, oke2, oke3)T 
are algebraic vectors, and T denotes transposition. 
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Introducing the designations  
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meeting the obvious equality  
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with the allowance for Eq. (14), we obtain from 
Eq. (8) that  
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Equating the right-hand sides of Eqs. (12) and (15) 

and multiplying the resulting equality first by Â$1 and 

then by Ĉ$1, we find the equation for the sought 
partial derivatives bik: 

 bk = Ĉ$1 Ŵk x + Fk. (16) 

Here we use the following designations: 

 Ŵk = Â$1 Q̂k Â;   Fk = Ĉ$1 Â$1 fk. (17) 

The matrices Ĉ$1, Ŵk, k ∈  {r, ψ, φ} are calculated 
by the following equations: 

Ĉ$1























ϑϕϑϕϑ
ϑ
ϕ

ρϑ
ϕ

ρ
−

ϑ
ρ

−ϕϑ
ρ

ϕϑ
ρ

==

cossinsincossin

0
sin
cos1

sin
sin1

sin1sincos1coscos1

][ T

D

Aik ; (18) 
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where Aik is the algebraic adjunct of the element cik; 

D = ρ2 sinϑ is the determinant of the matrix Ĉ. 
Substitution of Eqs. (18)$(20) into Eq. (16) gives the 

explicit  equations  for the elements bik of the matrix B̂: 
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Refraction was ignored at derivation of Eq. (21), since 
it was assumed that the vector Fk = 0 in Eq. (16). 
Besides, it was assumed that ρ = 1. 

Substituting Eqs. (4), (8), and (21) into Eq. (9), 
reveals its inner structure and enables one to derive 
explicit equations for the terms of the differential RTE 
operator in the spherical coordinates: 
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Thus, the sum of nonzero components (22)$(26) 
gives the equation for the differential RTE operator in 
the five-dimensional phase space: 
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Under conditions of the spherical symmetry of the 

exposure to solar radiation, when 
∂I
∂φ = 0, in Eq. (28) 

the term (s, ∇ I) φ = 0. In the case of the central 
symmetry (s, ∇ I) ψ = 0, (s, ∇ I) φ = 0, (s, ∇ I) ϕ = 0. 
For the model of a plane atmosphere, when r = ∞, the 
elements (s, ∇ I) ψ = 0, (s, ∇ I) φ = 0, (s, ∇ I) ϑ = 0, 
(s, ∇ I) ϕ = 0, and the differential operator contains 
only one term (s, ∇ I) r ≠ 0. 

We can see that the term (s, ∇ I) ϑ (25) is 

determined by the elements b12 = 
∂ϑ
∂ψ and b13 = 

∂ϑ
∂φ of 

the matrix B̂ (21), and the term (s, ∇ I) ϕ (26) is 

correspondingly determined by the elements b22 = 
∂ϕ
∂ψ 

and b23 = 
∂ϕ
∂φ. It is obvious that these nonzero elements 

of the matrix B̂ express geometric properties of the 
spherical coordinate system used. 

Consider how the elements bik of the matrix B̂ 
change if we do not accept the condition Fk = 0 of the 
rectilinear light propagation in Eq. (16). Actually, the 
vector Fk ≠ 0 if one accounts  for the atmospheric 
refraction. Direct derivation of the components of the 
algebraic vector 
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on the assumption of the spherically symmetric 
distribution of the refractive index in space and 
substitution of the obtained equations into Eq. (16) 
lead to the nonzero complementary element of the 

matrix B̂ 
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 of the refraction 

curvature of a light ray. It can be easily seen that the 
term (s, ∇ I) ϑ (25) at substitution into Eq. (30) takes 
the form 
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corresponding to the RTE component (1) responsible 
for refraction. Thus, from the above analysis we can see 

that the element b11 of the matrix B̂ corresponds to the 
light refraction as a physical effect. This conclusion is 
important for further consideration. 

 

New method to allow for refraction in 
RTE 

 

When justifying the new method to allow for the 
refraction, we remain within the assumption b11 = 0, 

which determines the rectilinear trajectory of rays. Let 
us demonstrate that refraction in this case can be taken 
into account through some change of the elements b12, 
b13, b22, and b23 that determine the geometric 
properties of the used coordinate system through, 
speaking figuratively, its deformation. Toward this end, 
let us change at every point P of the space the 
curvature of coordinate lines in accordance with the 
values of the refractive index. Besides the geometric 
radius r, below we also use the optical radius ro = nr. 
The Lame coefficients expressing the curvature of the 
new coordinate lines can be represented in the 
following form:  

 Ho
r = n,  Ho

ψ = nr,  Ho
φ = nr sinψ. (32) 

With the allowance for Eq. (32), the nonzero 

antisymmetric matrices Ŵ 
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different than that of Eqs. (19) and (20) by the factors 
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transformations according to Eq. (16), these factors 
transit into the equations for the elements of the  

matrix B̂o: 
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We can see from Eq. (34) that the refraction 
factors turn out to be hidden in the elements b o

ik 
characterizing just the geometrical properties of the 
new deformed coordinate system. Substitute the 
elements of the matrix (34) into Eqs. (25) and (26) 
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  (36) 

and make sure that Eqs. (35) and (36) obtained in the 
deformed spherical coordinates under the conditions of 
rectilinear light propagation coincide with the 
corresponding components of the differential RTE 
operator (1) that account for ray bending due to 
refraction. Replacement of the function I in the 
spherical coordinate system {r, ψ, ϑ, ϕ} with the 
function Io = I/n2 in the deformed coordinate system 
{ro, ψ, ϑ, ϕ} with the Lame coefficients (32) reduces 
the RTE (1) to the form 

3: 

 

( ),cotansinsin

sincossin
cos

oo
o

o

o
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oo

o

IBI
r

I

r
I

rr
I

−ε=
ϕ∂

∂ψϕϑ
−

−
ϑ∂

∂ϑ−
ψ∂

∂ϕϑ
+

∂
∂ϑ

  (37) 

free of refraction. The radiative transfer equation in the 
spherical coordinates with the allowance for the 
refraction (1) is equivalent to the transfer equation in 
the deformed coordinate system (37), which does not 
include explicitly any refraction terms.  

 

Conclusion 
 

In this paper, we derived the equation for the 
differential operator of the radiative transfer equation 
in spherical coordinates with local zenith for the five-
dimensional phase space in the model of spherical 
atmosphere with the refraction taken into 
consideration. This equation allows the inner structure 

of the RTE terms to be revealed from the positions of 
the field theory in curvilinear coordinates. 

Vector analysis of the field of ray directions in the 
medium with the variable refractive index showed what 
elements of the matrix of partial derivatives determine, 
on the one hand, geometric characteristics of the 
coordinate system used and, on the other hand, 
parameters of the actual refraction curvature of the 
light ray. 

The new method for considering refraction in the 
radiative transfer equation was justified for the 
spherical model of the atmosphere. The method is based 
on deformation of the coordinate system at every point 
in accordance with the spatial distribution of the 
refractive index in the medium. It was shown that in 
thus deformed coordinate system the differential RTE 
operator with refraction taken into account keeps the 
form characteristic of the system of ordinary spherical 
coordinates, while  being simpler. It does not include 
explicitly any refraction terms and corresponds to the 
rectilinear trajectory of light rays. 

It follows from the results obtained that for 
problems of the radiative transfer theory formulated for 
a spherical atmosphere with refraction taken into 
account there is no need in formal description of the 
real refraction curvature of light rays, as it can be 
taken into account in the RTE through the 
corresponding deformation of the coordinate system. 
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