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We analyze how the inhomogeneities along signal and reference atmospheric paths affect the 
efficiency of correction for phase distortions. Adaptive-optics systems operating with signals reflected 
from an object or scattered by atmospheric inhomogeneities as with reference ones are considered. The 
levels of residual distortions at various time lags in an adaptive system are studied. Calculations are 
performed for different scenarios of an optical experiment: ground paths and high-altitude (aircraft) 
horizontal paths. To describe altitude variations of the wind speed, the Bufton’s model is used. 

 

Introduction 
 

Laser beams formed in the atmosphere are subject 
to the effect of turbulent fluctuations causing beam 
distortions. 

1,2 To correct for turbulent distortions of 
optical beams, adaptive optical systems are used. 
Turbulent distortions themselves are independent of the 
object speed or the laser beam scanning speed, but 
requirements to an adaptive optical system (first of all, 
the frequency pass band 

3) in the case of a moving 
object are higher than those in the case of a stationary 
object. Adaptive optical systems usually use reference 
sources, whose radiation passes through the atmosphere 
in the direction opposite to the sounding radiation.  

Since adaptive optical systems critically depend on 
the quality of the supplementary information used, the 
possibility of forming a reference source in the optical 
channel, in which the optical system itself operates, is 
very important. However, most often the optical scenario 
allows the reference source to be formed for a somewhat 
different optical channel or direction. This gives rise to 
manifestation of the so-called anisoplanatism of 
fluctuations.  

 
Basic equations 

 
Anisoplanatism in adaptive systems operating 

using a reference source is caused by different 
aberrations of the wave front along atmospheric paths 
for the corrected and reference beams. This difference is 
caused either by the difference in the path lengths of 
the optical wave because of purely geometric factors 
(different paths or different radiation divergence of the 
corrected and reference beams) or by the time lag. 

4$8 
In many cases, the causes giving rise to these factors are 
similar and, what’s more, the methods of their 
mathematical representation are similar as well. 

Let us consider the problem of compensation for 
turbulent aberrations in the approximation of a phase 
screen generated on the path at the distance x. It is 

assumed that turbulent fluctuations are delta-correlated 
along the direction of propagation. It follows from here 
that to calculate fluctuations, one should perform 
integration along the variable x. Assume that a random 
screen is generated in the plane x; ϕ(ρρρρ ρρρρ, x, t) are phase 
fluctuations at a time t and a point ρρρρ ρρρρ, where ρρρρ ρρρρ is the 
cross coordinate. Using the Taylor’s œfrozen 
turbulenceB hypothesis, we can relate the parameters of 
the phase screen at the time t and t + τ as follows: 

ϕ(ρρρρ ρρρρ, x, t + τ) = ϕ(ρρρρ ρρρρ $ Vτ, x, t) = ϕ(ρρρρ ρρρρ $ Vt $ Vτ, x, 0), (1) 

where τ is the time lag; V is the wind velocity vector. 
The similarity of the mathematical description of the 
angular anisoplanatism and the anisoplanatism caused 
by the time lag follows from Eq. (1). 

The optical scenario of the experiment is 
characterized by the coordinates of the target and the 
reference source $ beacon. We use here the angular 
coordinates of the target θT and beacon θb, which are the 
ratio of the linear coordinates and the distance between 
the observation plane and the plane of the target (or 
beacon). The angular coordinates of the beacon and the 
direction of the system’s optical axis are described by the 
variables θb(t) and θA(t). The angular coordinate θT(t) 
for an actual object (target) being at the distance L 
and moving at a speed v = M ⋅ 330 m/s in the cross 
direction varies as  

 θT(t) = vt/L = ωt, (2) 

where ω is the angular frequency of the object motion; 
l is the Mach number. If the beacon is formed directly 
by reflection from the object itself, then the angular 
variable θb(t) = θT(t). If some arbitrary displacement 
of the object takes place, then, because of the finite 
speed of light “ and the presence of some lag in the 
adaptive system τd, to provide correcting for 
fluctuations, the Rayleigh beacon should be formed in 
advance, that is, it should be formed at that point, 
where the object will be at the time t + τd. Then 

 θb(t) = θT(t) + 2vτc/L + vτd/L = 
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 = θT(t) + 2v/c + vτd/L,  τc = L/c. (3) 

In the general case  

 θb(t) = θT(t) + η (2v/c + vτd/L), (4) 

where η is the advance parameter of the beacon; η > 0, 
when the beacon advances the object, or η = 0, if the 
beacon does not advance the object. 

When choosing the direction of the axis of the 
adaptive optical system, the lag associated with the 
finite speed of light should also be taken into account. 
Thus, 

 θA(t) = θT(t) + vτc/L = θT(t) + v/c. (5) 

As a result, the reference wave emitted at the time t 
acquires, when crossing the phase screen, aberrations 
described by the function  

 ϕb(ρρρρ ρρρρ) = ϕ[ρρρρ ρρρρ + θb(t)x, t + (L $ x)/c] = 

 = ϕ[ρρρρ ρρρρ + θb(t)x $ (L $ x)V/c, t]. (6) 

Here we assume that the time of propagation of the 
reference wave to the phase screen is (L $ x)/c. 

 
Rayleigh beacon 

 
At the time t + L/c the reference wave achieves 

the aperture of the adaptive optical system, and at the 
time t + L/c + τd the correcting surface is formed with 
the use of the information carried by this reference 
wave.  

The controlled laser beam comes to the phase 
screen at the time t + L/c + τd + x/c and acquires the 
following aberrations: 

 ϕA(ρρρρ ρρρρ) = ϕ[ρρρρ ρρρρ + θA(t + L/c + τd)x, t + L/c + τd + x/c] = 

= ϕ[ρρρρ ρρρρ + θA(t + L/c + τd)x $ V (L/c + τd + x/c), t]. (7) 

Comparing Eqs. (6) and (7) one can see that the 
residual error of correction is caused by the relative 
displacement of the phase screen. This displacement is 
equal to  

∆ = [θA(t + L/c + τd) $ θb(t)] x $ V (τd + 2x/c). (8) 

Substituting it into Eq. (5), we obtain 

∆ = [v/L(t + τd) + 2v/c $ θb(t)] x $ V (τd + 2x/c) (9) 

and, using Eq. (4), we find  

∆ = v(τd x/L + 2x/c) (1 $ η) $ V (τd + 2x/c). (10) 

When τd = 0, Eq. (10) becomes simpler, namely 

 ∆ = 2x/c (v (1 $ η) $ V). (11) 

It should be noted that this relative displacement 
∆ can be reduced to zero through the proper choice of 
the parameter η: 

 ∆ = 0 for η = η0 = 1 $ V/v. (12) 

If the wind speed is equal to the object speed, i.e., 
V = v, then the optimal value of the parameter η 
equals zero, i.e., the beacon formed by the signal 
reflected from the object is optimal.  

If v >> V, then the optimal value of η approaches 
unity, i.e., just the anticipatory Rayleigh beacon is 
optimal. In the case that the object moves in the 
direction opposite to the wind, the optimal value of η0 
is larger than unity.  

At a considerable time lag τd, the displacement ∆ 
can be reduced to zero, if we take  
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V

/2/
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1
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+τ
−=η . (13) 

In the case that the turbulence is concentrated near the 
object, that is, x = L, we have  

 η0 = 1 $ V/v. (14) 

In this situation, the optimal value of the parameter η 
is independent of the time lag. In the opposite 
situation, when the value of the coordinate x 
approaches zero, we have 
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or 

 
Vx
vL

/
/10 −≈η ,  ccL τ=>>τ 2/2d . (16) 

In the area adjacent to the aperture (coordinate x 
is small), we can omit unity in the latter equation, thus 
obtaining that 

 
Vx
vL

/
/

0 −≈η , (17) 

that is, if the wind and the object have the same 
direction, then the advance parameter tends to negative 
infinity, and if the object moves in the direction 
opposite to the wind, then it tends to the positive 
infinity. 

In the general case, turbulence is distributed all 
over the path, and we have to consider a set of phase 
screens. Moreover, the wind speed may depend on the 
coordinate x, and this means that phase screens should 
move with different speed. 

9  
 

Spatial filtering function 
 

In the general case, optimization by anticipatory 
re-aiming of the beacon is rather difficult. Moreover, in 
the majority of realistic situations, the intensity of the 
Rayleigh beacon is too low to provide for the phase 
correction. However, in some cases the anticipatory re-
aiming of the beacon gives some advantages. 

To estimate the correction efficiency, we should 
calculate the variance of residual fluctuations. This 
variance is the path integral of some function 
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depending on the intensity of turbulence C2
n(x) and on 

the displacement ∆(x). 
The needed equation can be derived from the well 

known equation describing the angular anisoplanatism, 
since in both cases the source of residual errors is the 
same. For the angular anisoplanatism, the variance of 
residual phase errors was presented in Ref. 8 as  

 ∫θ=θθ=σϕ

L

n xxxCk
0

3/5223/53/5
0

2 d)(91.2)/( . (18) 

Since the product of θ by x is the relative 
displacement of the trajectories of the reference and 
basic beams, we can obtain the following equations: 
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(19)

 

Note that for the phase screen, i.e., a thin turbulent 
layer characterized by the coherence length  

 xxCkr n δ=− )(423.0 223/5
0 , (20) 

the equation for the variance has the following form: 

 3/5
0

2 )/(88.6 r∆=σ ϕ∆ . (21) 

This equation coincides with the phase structure 
function written for the difference coordinate ∆. The 
variance of the residual error calculated by this 
equation accounts for the phase fluctuation component 
determined as a constant lag (piston). Since this 
component does not affect the correction efficiency, the 
efficiency is overestimated. 

Equation (19) becomes more accurate, when the 
ratio ∆/D (here D is the aperture diameter) decreases. 
The equation for the variance of phase fluctuations 
without the constant component of field fluctuations is 
given in Refs. 4, 10, and 11. With the designations 
used in this paper, this equation can be written as 

 ∫ ∆=σ ϕ∆

L

n xxDxfxDxCk
0

3/5222 d)](/)([)()(91.2 , (22) 
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is the spatial filtering function, 

9 and the function D(x) 
is a projection of the aperture diameter onto the plane x.  

It should be taken into account that the reference 
beam diverges, while the direct (basic) beam is focused. 
For beams with large diameters and small beacons, the 
equation for a spherical wave can be used, namely,  

 D(x) = D (1 $ x/L). (24) 

At small values of the argument, the filtering 
function  

 f(α) = α5/3 (25) 

and Eq. (22) transforms into Eq. (19). At large values 
of the argument, the filtering function saturates and the 
resulting variance of the error of phase correction 
achieves the level twice as high as the level achieved by 
the system without a correction, that is,  

 3/5
0

2 )/(03.12)/( rDD ⋅=∞→∆σ ϕ∆ . (26) 

The function f(α) is shown in Fig. 1. Dots correspond 
to the values obtained from numerical integration. The 
solid curve is the result of approximation of the 
calculated results by a nine-order polynomial. The 
approximation was performed in the logarithmic 
coordinates, that is, 

 ∑
=

α=α
9

0

)(log)(log
n

n
naf . (27) 

Using the approximation (27), we calculated the 
variance of the correction error for different paths. The 
coefficients of the approximation are given below in the 
Table. 
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 Fig. 1. Spatial filtering function f(α). 
 
For the case of correction with the use of the 

reflected signal, let us consider the effect of a time 
lag 

10 caused by the finite speed of light, i.e., when 
η = 0 and τd = 0. As the object speed increases, the 
residual error of correction increases too. Therefore, 
there exists a limiting object speed corresponding to a 
given level of the residual error. Assume that the 
residual error equals 10% of its level in the absence of 
correction, that is,  

 3/5
0

22 )/(03.11.0
10
1 rD⋅=σ<σ ϕϕ∆ . (28) 
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Table 

a) if $4 < log α < 0, then 

n = 0 n = 1 n = 2 n = 3 n = 4 
$ 0.90300263 + 0.54630991 $ 0.0075005029 + 1.9852349 + 3.0232371 

n = 5 n = 6 n = 7 n = 8 n = 9 
+ 2.2959981 + 1.0072076 + 0.25730477 + 0.035491319 + 0.0020411442 

 
b) if 0 < log α < 4, then 

n = 0 n = 1 n = 2 n = 3 n = 4 
$ 0.90300481 + 0.46973638 0.41229668 + 0.29897322 $ 0.15200895 

n = 5 n = 6 n = 7 n = 8 n = 9 
+ 0.042862686 0.0024713447 $0.0020118738 +5.33356E$4 $4.1574399E$5 
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Fig. 2. Maximum object speed (measured in Mach numbers) at high-altitude atmospheric paths under conditions of adaptive 
correction using reflected signal as a reference one. The wind speed is 10 m/s, and the residual error is 10%. Time lag is absent in 
the system. Horizontal propagation of radiation (0), paths directed to the lower hemisphere ($1°, $2°, $3°), and paths directed to 
the upper hemisphere (1°, 2°, 3°). 
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Fig. 3. Maximum object speed at high-altitude atmospheric paths under the conditions of adaptive correction using reflected signal. 
Calculation was made with the use of the B ufton’s model for the wind velocity Vg = 5 m/s, residual error is 1%. Horizontal 
propagation of radiation (0), paths directed to the lower hemisphere ($1°, $2°, $3°), and paths directed to the upper hemisphere 
(1°, 2°, 3°). 

 
The maximum object speed calculated for this level 

of the residual error is depicted in Figs. 2 and 3. The 
calculations were performed assuming constant wind 
speed of 10 m/s. The direction of the object motion 
coincided with the direction of the wind. Consequently, 
the maximum object speed usually does not exceed the 
speed of sound.  For the paths with the negative tilt 

angle as measured from the horizon (this can take place 
only at elevated paths), this value is no larger than the 
half speed of sound. It should be noted that, according 
to the condition (28), high efficiency of correction can be 
achieved only at small ratio D/r0. For example, for 

0.103(D/r0)
5/3

 < 1 we obtain the condition 
(D/r0) < 3.9. 
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Application of the Bufton’s model 
 
Similar results were obtained with the use of the 

B ufton’s model 

3 of the vertical distribution of the wind 
speed; the results are depicted in Figs. 4 and 5. The 
B ufton’s wind model, as known, is described by the 
following equation: 

 












 −−+=

2

g 4800
9400exp30)( hVhV , (29) 

where Vg is the model parameter corresponding to the 
wind speed at the ground level; h is the current height 
above the ground, in m. In calculations it was assumed 
that Vg = 5 m/s. 
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Fig. 4. Normalized residual error of phase correction with the use of Rayleigh beacon. The time lag in the system was 1 ms (upper 
row) and 10 ms (lower row). The B ufton’s wind Vg = 5 m/s; D = 1 m. Horizontal propagation of radiation (0), paths directed to 
the lower hemisphere ($1°, $2°, $3°), and paths directed to the upper hemisphere (1°, 2°, 3°). 
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Fig. 5. Maximum allowable object speed (in Mach numbers) at short atmospheric paths for the adaptive system operating against 
the reflected signal. Residual error is 1%. The time lag in the system is τd = 0 (a) and τd = 1 ms (b); Ht is the target height; 
Hs = 5 m; the B ufton’s wind Vg = 5 m/s; D = 0.5 m. 
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In this case, the stricter condition  

 3/5
0

22 )/(0103.0
100
1 rD=σ<σ ϕϕ∆  (30) 

is super-overestimating for the residual phase error. As 
can be seen, for some paths the correction error exceeds 
this limit even at the zero object speed. Under the most 
favorable conditions, the maximum object speed should 
be below 50$100 m/s. When the object moves in the 
direction opposite to the wind, this restriction becomes 
even stricter.  

It follows from the above data that the correction 
with the use of the signal reflected from the object 
itself has limited capabilities. 

Let us consider the correction with the use of the 
Rayleigh beacon. In this case, the correction error can 
be minimized by selecting a proper value of the re-
aiming parameter η. Since the case that the object speed 
is much higher than the wind speed is more important for 
us, the optimal value of the re-aiming parameter η is 
close to unity. It follows from Eq. (10) that the 
correction error is fully determined by the wind speed 
profile and the time lag τd and independent of the 
object speed.  

As an example, let us consider the result obtained 
with the use of the Rayleigh beacon (see Fig. 4). The 
plots show the variances of the residual phase 
aberrations normalized to the variance of the same 
fluctuations in the absence of correction. The time lag 
of the adaptive system is equal to 1 and 10 ms. 

The calculations show 

9 that the zero time lag 
corresponds to the maximum efficiency of the adaptive 
system operating with application of the Rayleigh 
beacon, as well as for the system using the reflected 
signal, when the object speed equals zero. It can be 
seen that even for the longest paths the relative error 
of the phase correction is no larger than 1%. Thus, for 
the B ufton’s wind model, the residual error proves to 
be almost an order of magnitude smaller, if the optical 
system is placed at the altitude of 20 km. In the 
B ufton’s model, as known, the maximum wind speed 
(35 m/s) takes place at the altitude of 10 km.  

As the time lag increases up to 1 ms, the residual 
phase error becomes equal to several percent. For the time 
lag of 10 ms, the error increases up to 30$60% for the 
system altitude Hs = 10 km and up to 5$10% for the 
altitude Hs = 20 km. Thus, we have that for rather 
high correction the time lag should be decreased down 
to 1 ms and for the efficient operation in the whole 
range of the considered paths the lag should be within 
0.1 ms.  

Similar calculations were made for the ground 
atmospheric paths as well. The results corresponding to 
correction with the error smaller than 1% are shown in 
Fig. 5, wherefrom we obtain the maximum allowable 
object speed at the zero time lag of the adaptive 
system. The maximum object speed is less than 2$3 M 
roughly in every second case. When the time lag is 
about 0.1 ms, the maximum object speed varies from 

0.5 to 1.5 M. Thus, at these paths the use of a beacon 
based on reflection again leads to the strict conditions on 
the object speed and the speed of adaptive control. 

Taking the advance parameter equal to unity, let 
us consider the control based on the Rayleigh beacon. 
For this beacon, residual distortions are independent of 
the object speed and fully determined by the wind 
speed profile and the time lag of the adaptive system. 
The calculated results normalized to the residual error 
at the time lag of 1 ms are shown in Fig. 6. In the 
whole interval, we obtain the residual error less than 
1%, and this error is almost independent of the path 
length. 
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Fig. 6. Residual distortions as a function of the path length 
for the time lag of 1 ms (a) and as a function of the time lag 
in the feedback circuit (b) of the adaptive system for different 
initial altitudes of the source. In both cases the Rayleigh 
beacon was used as a references source. Hs = 5 m; the B ufton’s 
wind Vg = 5 m/s; D = 0.5 m. 

 
To study the dependence of the residual error on the 

time lag, let us consider a 10-km long path (Fig. 6b). It 
can be seen from Fig. 6b that the increase of the time 
lag up to 10 ms increases the residual error up to 
almost 15%. Therefore, the maximum allowable time lag 
in the adaptive system is 1$2 ms. 
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Conclusions 
 
Application of a signal both reflected from  

an object and scattered by the atmospheric 
inhomogeneities (Rayleigh signal) as a reference beacon 
makes it possible creating a realistic adaptive optical 
system. This system can operate along both low and 
high-altitude (aircraft) paths. Since the corrected and 
reference signals do not coincide, a rather high level of 
correction, i.e., the small value of residual phase 
distortions caused by anisoplanatism, can be achieved 
only with a fast enough adaptive system, in which the 
total time lag does not exceed 1$2 ms. 
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