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A nonlinear ring interferometer (NRI) is chosen as a generalized structure model of encryption
devices in nonlinear-dynamic cryptology. The suggested concept of chains of transposition points (CTP)
allows NRI to be represented as a system, in which optical-physical interactions have the graph structure.
For analysis and synthesis of similar systems, route-operator formalism is being proposed. Processes in the
NRI are described and the model of a decoder exploiting a chaotic response is synthesized using this
formalism. The possible foundations for classification of devices in nonlinear dynamic cryptography and
different versions of such devices are given. Some examples of computer simulation of
encryption /decryption in the static mode and the mode of dynamic chaos are presented and the effect of
model parameters on the degree of communication confidentiality is illustrated. The concept of
determined spatial chaos arising in the static mode of a dynamic system is discussed. A relation is found
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between the CTP and discrete maps.

Nonlinear ring interferometer and model
of processes in it

In connection with the progress in laser physics
and technology as well as in optical communication
systems, it is necessary to develop methods and devices
for hidden transmission of optical information.

A nonlinear ring interferometer (NRI) is an optical
device involving phenomena related to both nonlinear
dynamics (synergetics) and cryptology. Such devices
were studied theoretically and experimentally by
Akhmanov, Vorontsov, Larichev, Shmalgauzen, and other
scientists (see Ref. 1). In the late 1980’s — early 1990’s,
scientists of this research school proved the promise of
the NRI as applied to information processing.

In the 1990’s, the progress in synergetic methods
gave rise to a new viewpoint on the problem of hidden
information transfer, because the devices operating in
the mode of deterministic (dynamic) chaos can distort
the valid signal to such a degree that it can hardly be
recognized. This opens up new possibilities of
confidential communication with the use of chaotic
modes in nonlinear systems. Since these systems may
have different nature, it is reasonable to consider a new
approach to scientific and technological field: nonlinear
dynamic cryptology. The traditional cryptology
historically is its first and most important part now. It
is well known that cryptology consists of the following
parts: cryptography dealing with mathematical methods
of information conversion in order to protect it against
illegal access and cryptanalysis, whose subject is
various ways of illegal access, for example, cipher
crack. Note that, in Doich’s opinion, unpredictability
caused by deterministic chaos is covered, in the general
case, by quantum uncertainty (Ref. 2, p. 223). Thus,
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we formulate the problem of searching object domains,
where cooperation of approaches of quantum and
nonlinear dynamic cryptography is optimal.

Nonlinear dynamic cryptology demonstrates the
expanding set of different versions of devices and
operating modes, as well as methods for improvement of
communication confidentiality.3 Classification of the
information transfer systems using chaotic signals was
proposed by Vladimirov and Negrul in Ref. 4. According
to literature data, cryptographic hidden communication
systems are developed most rapidly in the radio wave
frequency region.

In our opinion, the following problems are urgent
in this context:

1) Justification of the possibilities of developing
nonlinear dynamic cryptographic optical devices based on
the knowledge of regularities of synergetic phenomena in
optical systems. Examples of such justification by means
of numerical simulation are given in Refs. 5-9.

2) Use of the heuristic potential of methods for
description of structural genesis in nonlinear optical
systems10-12 for the development of cryptology.

3) Mutual leasing (Ref. 13) of methods for
description and organization of cryptography/
cryptanalysis systems operating in the radio and optical
regions.

4) Synthesis of optical logical elements based on
bistable devices, 14 multibeam laser, 1> etc.

5) Practical implementation and optimization of
nonlinear optical cryptology devices wusing laser
radiation.

Within the framework of the first three problems
(except for the cryptanalysis), let us consider a
nonlinear ring interferometer. In our opinion, it may
become an instrumental basis for nonlinear dynamic
cryptology in optics.>~7:9 To study this possibility, we
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used the model of structure formation in the laser beam
cross section in NRI.10 This model accounts for
multiple passes of an optical field and amplitude and
phase modulation of an input laser beam, as well as the
time of field propagation in the NRI. The experimental
geometry is depicted schematically in Fig. 1, where NE is
a nonlinear element (Kerr medium), mirrors M and
M, have the power reflectance R, and the reflectance
of mirrors M3 and M, equals unity, G is a linear
element serving for large-scale transformation of the
field, for example, turn, shift, extension (compression)
of a laser beam. Moreover, the element G can provide
for splitting of the laser beam, turn, shift, extension
(compression) of its parts, and then convergence into a
single beam.
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Fig. 1. Nonlinear ring interferometer. Element G turns the
optical field by A =120° (in the beam cross plane xOy), and
the trajectories of three beams 7, 2, and 3 become closed after
three passes over NRI (a); projection of closed trajectories of
beams 7, 2, and 3 onto the plane xOy of beam cross
section (b).

If the laser beam is not divided, the model has the
form

1,0U(r, £) /8t = K Ap(r, ) /(1 = R) +
+ D, U(r, ) = U(r, 1),
ARe(r, ) = (1 = R) Al(r, ) +
+y (1 = R/2 A3,(r, £) Agp(r, £ — 1) x
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xcos(Wt + ¢(r, £) — dnp(r', t — 1)) /0 +

+ [yAne(r', t — 1) /(20)]2, )

where r = (x, y) is the radius vector of the cross section
x0y; 1, is the relaxation time of the nonlinear part of
the refractive index of the Kerr medium (for example,
liquid crystal) NE with the length L; D, is the
normalized diffusion coefficient of the molecules in the
nonlinear medium; o is the coefficient of beam extension
by the element G; y=y(r, t) is the doubled loss
coefficient; K= —R) ny LEI(DAIZHaX gty is  the
parameter determining the strength of nonlinear effects;
ny is the parameter of nonlinear refraction; [k(F w/c
is wavenumber; Apax (x4, is the maximum value of the
amplitude of the input field; A;, and Ayg are the field
amplitudes normalized to Apax (x4, at the entrance of
NRI and NE, respectively; ¢ and ¢ng are the field
phases at the entrance of NRI and NE, respectively;
1=1(r, ) =t (r, ) + U, t — t(r, 1)) /w, t, is the
equivalent delay time in NRI as measured by a
modulator in the feedback unit (omitted in Fig. 1).

Description of ray route in nonlinear
ring interferometer

If we ignore molecular diffusion in the NE (liquid
crystal), then from Eq. (1) we can obtain a “point
model” of the processes U(r, t) and Ayg(r, t) in the
laser beam cross section xOy. The term “point model”
is justified by the fact that the entire set of points in
the cross section xOy, depending on the form of large-
scale transformation of the field by the element G in
the interferometer feedback unit, is divided into the
infinite number of subsets. They are independent in the
sense of the absence of physical interaction: between the
fields Ang(r, t); between the nonlinear phase changes
U(r, t), as well as between U(r, t) and Apc(r, t). But
these subsets (belonging to the plane xOy) are chains
of points, in which light fields and nonlinear phase
changes interact consecutively (see Fig. 1).

In other words, the light signal (carried by an
individual ray of a laser beam), while passing through
the nonlinear medium and the NRI feedback unit at the
point i, acquires the phase change U; and experiences
the delay t.;. Because of the element G, the signal (ray)
comes to the point i + 1. Here, in a sum with one of the
input rays of the interferometer, it, according to model
(1), affects the rate of variation of the nonlinear phase
change Ujyq.

Just in this way the phase change U; at the point ¢
affects the phase change U; 4 1 at the point i + 1. We call
such points transpositional points.!! If the umber of
points in the subsets mentioned above is finite and equal
to m and the ray from the mth point comes to the first
point, then we can speak about the degenerated two-
dimensional relation of the mth order,! and the number m
is called the transposition order. In such an organization
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of the feedback, the ray trajectory is closed after m
passes in the NRI. According to the accepted method of
numbering the transpositional points, the i + 1 record
means the operation ((i + 1) mod m) +1, where
(i + 1) mod m denotes the residue of i + 1 division by
m. Physically, this just means that the ray from the
mth point comes to the first point. !

For example, according to Fig. 1b, the points 7, 2,
and 3 form a closed chain of transpositional points
(CTP), where m =3. Speaking generally, at other
transformation of the field by the element G in the NRI
(see Fig. 1a), both closed and wunclosed chains with
different finite or infinite number of points is formed.

From the methodical viewpoint, the concept of CTP
seems to be quite convenient, because the CTP structure
represents the ray path through the NRI. The number of
passes in the NRI serves a measure of the length of the
passed route. It is natural to represent CTP as a graph.
As known, graphs can be specified in different ways: by
adjacency and incidence matrices, lists of, for example,
pairs of nodes connected with ribs (arcs), specification
of the set of adjacent nodes for every node [Ref. 16,
p. 162]. The specific feature of optical and physical
processes in the NRI is in the fact that the events of ray
passages through NE and element G, where ray
splitting is possible, as well as linear transformations
and convergence of rays into a single beam form a strict
sequence. To formalize this, we propose to use the
following language for description of the chain
structure.

(g;) or (g) — point (graph node) g; or g, which is a
generator. That is, the term in parenthesis () is a
generator with respect to the next term.

(9) i — ith point following the point ¢ (ith
descendant of the generator g). And (¢) 0 =¢g. But if it is
followed by the symbol ], then i is treated in other way.

[(9) 01, [(g)],, — branch (branch point) of order
m: at the point g one line branches into m lines.

[(9) d],, i — ith element (point) of dth
subsequence starting at the branch point [(g)],. And
[(9) dly, 0 =[(g)]y =g

[(¢) d],, O — dth subsequence (way, line) starting
at the branch point [(g)],, (all elements (points) of the
dth subsequence). And [(g) d],, 0 O [(g) d],, O.

[(¢9) d],, — way segment (graph arc or rib)
connecting the point g with the point [(g) d],, 1.
Hereinafter, for simplicity we make no difference
between the terms of rib and arc.

[(¢) O1,, — any of way segments starting from the
point g.

{(9)},, — convergence (point of convergence) of
order m: at the point g, m lines converge into one.

{(g)}yi — ith element (point) of subsequence
starting at  the  convergence  {(¢)},. And
(P 0={(Phn =9

fin; — final element of the chain, i.e., the point, at
which the chain terminates, the subscript is the
identifying number of the final point.
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It is obvious that any point g is a branch point and,
at the same time, the point of convergence of at least first
order.

The absence of symbols between ) and the
following sign of convergence } makes unnecessary the
presence of parenthesis (), i.e., the following identities
are  valid:  {((¢) D}, ={( i},  {({(p d], D}y, =
={[(g) dl, i}, etc.

In some cases, open parenthesis can be omitted,
but sometimes they should be kept. Let, for example, a
branch of order 3 be at the point (g{) 4. All generated
sequences have different numbers of the elements 7y,
ny, and n3, and they all overlap at one point, after
which the chain terminates at the fifth element, i.e.,
the fifth element is the final one. Then this situation
can be represented symbolically as {[(go) 1l3 ny;
[(g2) 213 ny; [(g2) 3l3 n3l3 5 = fin, where (g1) 4 = go.
If all subsequences have the same number of elements
(n; = n), then this situation can be represented in a more
compact  form:  {[(gy) Ol n}3=fin  or  even
{l(g2) 13 n}3 = fin.

Any expression having sense in the above context
and using the proposed formalism specifies some route of
a laser beam inside the NRI or a set of routes. A point is
a route of zero length. This formalism allows us to judge
on the number of branches and convergences (the number
of routes) and the length of routes. In our opinion, a
certain number of routes can serve as one of the ways to
specify a graph.

Interferometer as a system with graph
structure and route-operator formalism

Let us describe the simplest types of the chains of
transpositional points that can exist in a nonlinear ring
interferometer.

If the element G (see Fig.1) reflects an image
specularly about the straight line lying in the laser beam
cross plane and passing through its center, then all
CTP’s are described as (g3)2 = g;, where k is the CTP
identifier and g # g; at k # [ (hereinafter the subscripts &
and [ have the same meaning). For the points located at
the line of specular reflection, (g;)1 = g, is also true.

At laser beam shift by the distance Ax, the
following expression is true: (gp) my = fin,, where
fin, # gy, and my, depends on Ax and on the position of
the point gp. For the square aperture of a laser beam
and the shift Av =a/m along a square edge of the
length a, all mp=m — 1. It is obvious that CTP is
unclosed, and its configuration can be called linear.

If the laser beam is turned by the angle A = 210 /m
in the plane xOy, (g;) m = g, is true, in which » and
m are coprime. It should be noted that for the beam
center g, we can assume m = 1 at any A. In this case,
CTP is closed (in a ring) and its configuration can be
logically called the ring one. It is obvious that if m = 2
(A = 180°), then this expression reduces to that for the
specular reflection.
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If the turning angle A # 21me/m, then the CTP
contains the infinite number of points, and the
beginning and the end of the chain cannot be separated:
(gr.i) 1= gp.i+1, where i is the number of a point in the
chain, i0(—o0; +00).

At compression of the laser beam (o<1), the
equations {(gy) ©}e = g. and {(g.) 1} = g. are true,
therefore the CTP is a combined closed unclosed
configuration, which can be imagined as a “converging”
infinite-pointed star.

At the extension of a laser beam (o>1), the
equations  [(g.) klo =finp, and  (gJ1=g. or
{(finy) ©}, = g. and (g )1 = g. are true. The latter ones
(contrary to the real chronology of ray passage over the
NRI) describe the back route: from the final chain
points fin;, located at the beam periphery to their
common initial point g.. The CTP is also combined, but
its configuration can be imagined as a “diverging”
infinite-pointed star.

Let us take into account that in the NRI there are
points of input g;, and output fin,, of the laser beam
energy. For definiteness, we assume that the energy is
released in the first way: [(g)1],,.

Then for the case of specular reflection, omitting
the subscript k, the equation (gg) 2 =g, can be
complemented as follows:

{(gin ) 15 [(g)) 212 1} =g; and [(g) 1o 1 = fingy

or

[{Cgin D15 [(g2]2 1}2= gi) 12 1 = fingue i

where i, j =1, 2 or 2, 1.
For the case of the beam shift, the equation
(gp) my, = finy, is replaced with the three ones:

[((gin )1 =g1) 1o 1 = fingy 1,
[ (Gin 15 [(gi-1) 212 132 = gi) 1121 = fingy
[(gm) 2]y 1 = fin,

where i 0 [2; m]. The third equation describes the fact
that the CTP is unclosed, because the ray from the
point g, entering the NRI feedback unit in the way
denoted by the symbol 2: [(g,,) 2], is absorbed at the
point fin (for example, on the diaphragm).

For the case of beam turning by the angle
A =21 /m, the equation (gy) m = g, is replaced by
the following one:

[{(Gin i+ 15 [(g)2]2 1}2 = gis1) 1121 = fingy i+1,

where i0[1; m], and if i +1=m + 1, then the index
should be equal to 1.
If A # 21! /m, then it is true that

[{Ginis D15 19212132 = givt) 1121 = fingyiist,

where i0(—o0; +0). In the case of the beam
compression, in place of the equations {(g;) ®}. = g.
and {(g)1}e = g, We have

Vol. 14, No. 11 /November 2001,/ Atmos. Oceanic Opt. 991

[(gin D1 =g1) 121 = fingy 1
— for the initial CTP point g4 lying on the periphery;
[{Cgin D15 [Cgi=1) 212 1}2= g 1121 = fingy ;
— for internal CTP points ¢g;, where i0[2; m—1];

[({(ginnz)1; [(gm—1) 2h1 }e= gm) 1=
= ﬁnoutmv {(gm)1}°° = 9m

— for the point g,,, being the limit g. of the CTP
sequence: at m — © g, — (.

In the case of beam extension in place of the pair
of equations [(g.) k]. = finy and (g.)1 = g., we have

{(gin) 15 1(90) 210 1}2= g, 1(ge) 1o 1 = fingyic
— for the initial CTP point g1 = g.;

[{Cgin 215 [(g1) 2]w 1} = g2) 1121 = fing, 2
[{(gin) 15 [(gi-1) 212132 =g 1o 1 = fingy;
— for the internal CTP points g;, where ¢ O [3; m);

[(gm) 2] 1 = fin

— for the point g,,, being the limit of the CTP sequence
at m - . And in place of the equations for the back
route {(finy) ®}, =g, and (g1 = g., the following
equations are true:

[({(ﬁnouth; (ﬁn)1}2 = gm) 1]2 1= Jinm

— for the point g,,, being the limit of the CTP sequence
at m — oo

[{(fingyt D15 [(gix1) 21 1}2= 9) 121 = gin
— for the internal CTP points ¢g; ¢ O [2; m);

[{(fingu 15 [€92) 212 =9 ) 1121 = ginc

— for the initial CTP point g1 = g..

In the above examples, the route equations fully
specify the CTP structure in the NRI and the laser
radiation entrance and exit points. It can easily be seen
that for “ordinary” (internal) CTP points, the following
route equation is valid:

[((Gin i+ 15 [(g) 212 )2 = gint) 1121 = fingyg j+1. (2)

Apparently, the route equations should include
description of physical transformations, the laser beam
undergoes. For this purpose, route points and segments
(graph nodes and ribs) should be assigned to some
operators (transfer coefficients, functionals, etc.)
describing physical processes in route elements. Thus,
we can describe signal (a ray of a laser beam)
transformations in graph elements.

As applied to the NRI (see Fig. 1), this is realized
in the following way. Transpositional points g;
(convergence points) are located in the nonlinear
medium. At these points, optical fields are summed, the
resulting field is delayed, and the measure of this delay
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is the nonlinear phase change U(r, t) evolving under
the effect of the resulting field according to the
differential equation in the set (1).

Within the proposed route-operator formalism,
this means that signals summed at the corresponding
graph nodes acquire the phase delay U;(¢). Because of
the medium nonlinearity, the net signal changes the
characteristics of the operator (transfer coefficient)
realized at this node. It can easily be seen that the ribs
[(g) 1]5 and [(gi, ;) 1]4 can be assigned to the transfer
coefficient (1-R)1/2, and the rib [(g;) 2]y can be
assigned to the transfer coefficient at the amplitude y,/2
and the delay ¢, ;(¢). The final point of the ray fin located
on the diaphragm will be described as an ideal absorber.
For all the rest elements of the route, the default transfer
coefficient equals unity, because no interaction with the
laser beam field is assigned to these elements.

The operator corresponding to the input point g;, ;
of the laser beam can be specified as a function of time
and the index i representing the spatial dependence.
This function must describe the signal (amplitude
A;(t)) dynamics at the NRI input.

It is natural to treat the beam output point fing, ;
as a place of the interface, i.e., NRI connection with
other devices. Having known their characteristics, we
can specify the operator corresponding to the point
fingut ;- If such devices are absent, the point fing ;
should be described as an ideal absorber.

Wide application of the route-operator formalism
to synthesis of mathematical models is provided for by
the general basic assumption that significant (in
simulating) events of interaction in the system have the
graph structure. Examples of such objects of the study
can be easily found among optical, radio, and
communication (both technical and sociocultural)
systems.

Application of route-operator formalism
to construction of a decoder model

If the NRI is interpreted as an encryption device,
then the proposed formalism must serve a tool for
synthesis of a dynamic system playing the role of a
decoder. It is logical to consider the route equation
relating the input and output NRI signals with the
allowance for the operators realized by the route
elements as the equation for input signal A(r, t). Let
us describe our experience in that sort of synthesis.

First of all, it should be noted that now the point
fingut i+1 corresponds to the input of the decoder
fitouti+1 = Gind i+1 rather than an ideal absorber.

From the route equation (2) and the above
assignment of operators to the elements of Eq. (2), it
can easily be seen that the signal comes to the decoder
output fingyt ;+1 by the rib [(g;+1) 1] with the transfer
coefficient (1 — R)!/2. This means that the decoder
must have an element, for example, the radiation input
point  (gindq+1), which realizes the operator
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(1 = R)~1/2 inverse to the operator of the decoder rib
[(gi+1) 1]o.

At the points g; of the decoder, the signals coming
from the ribs [(gin;+1) 111 and [(g;) 2], sum up,
undergo the delay U;(¢), and separate. It should be
noted that according to Eq. (2) and content of the
operators, the results of separation are signals (at every
output of the beam splitter) identical to the signal at
its input. Consequently, the separation operation does
not change the signal.

Then, two points must enter the decoder: phase
delay Ug;+1(t) = — U;+1(¢) occurs at the point gq j+1.
At the point (g4 ;+1)1, the signal equal to the signal S;
coming from the decoder rib [(g;) 2], is subtracted
from the signal coming from the node (g4;+1). Let the
point g4 +1 be located on the rib [(gipqi+1) 1] i€,
[(gin di+1) 11 1= gdi+1, where the branch order m is
determined below.

Let us take into account that the signal comes to
the rib [(g;) 2], from the point (g;) and it is equal to
the signal coming from the point (gj, q ;). Therefore, to
generate the signal S; in the decoder, it is sufficient to
make the copy [(gind4) 21, of the rib [(g;) 2],. This
copy, however, has the difference that the phase delay
realized on the rib [(gin q i) 21,, differs from wt, ;(¢) by
. In such a way, the operation of subtraction is
provided for, now in the summator (gq j+1)1.

The decoder rib [(gi, ;) 1]y corresponds to the
transfer coefficient (1 — R)1/2, therefore a terminal
element compensating for radiation losses is needed in
the decoder. Let the point (gq ;+1)1 be such an element.

It is obvious that the necessary number of ways
from the point (gj, q;) does not exceed two, i.e., it
should be assumed that m = 2. With the allowance for
the above-said, we can construct the equation
describing the transformation of the signal in the
decoder:

{({gind i+ 1121 = gq i+l [(Gina ) 212 1} 1 =
= finout d i+1» 3

where the point (gi, q i+1) has the transfer coefficient
(1 = R)™1/2; the point (g4 ;+1) makes the phase delay
Ug i) = =U;q(t), the rib [(ginq4) 2]o has the
transfer coefficient y/2 and makes the phase delay
WY, ;(t) + ¢ The convergence point (g4 ;+1)1 sums the
incoming signals and transits them with the gain
4 -R)1/2

To provide for the delay Ug +1(8) = — Uiq(¢) in
the decoder, it is sufficient to provide for fulfillment of
the equality for the coefficients of decoder/encryption

device nonlinearity Kq = — K by selecting the nonlinear
medium, for which nyq = — ny. But omitting selection
of the nonlinear medium, for which Kq=-K, it is

sufficient to provide for fulfillment of the conditions
Wl ¢ () = Wt ;(t) + T and frac (Wt 4 ;(t) /Q2M) = -
frac(wt, ;(t) /(2D + 0.5) in the rib [(ginq) 219,
where frac denotes the fractional part of a number. In
this case, the field at the decoder output has the same
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amplitude, and its phase is shifted by 1 with respect to
the situation when Ky = —K.

Comparing Egs. (3) and (2), we can notice their
significant differences: the decoder at its input has a
beam splitter rather than a summator as in the
encryption device; and, vice versa, at its output the
decoder has a summator rather than beam splitter.
Having passed through the ribs [(gi, q;) O] of the
decoder, all rays leave it, not coming back, i.e., the
decoder turns out to be a nonlinear system without
feedback, as in the encryption device. Therefore, only
differential equation of the model (1) is true for the
decoder, and the decoder itself cannot generate dynamic
chaos. Thus, the decoder operates in the mode of
chaotic response, or, using the terminology of Ref. 4, in
the mode of passive synchronization. Let us restrict our
further consideration to this case.

The decoder model (3) was synthesized based on
the condition that the decoder completely reconstructs
the signal A;, ;(¢) at the NRI input from the signal at
the NRI output: Aj, ;(£) = Agyt q ;(8). If this requirement
is reduced to the condition Ay q ;(t) = const A;, ;(¢),
then the content of the operators realized by the route
elements in the decoder model (3) can be changed.

For example, the point (g, 4 j+1) has the transfer
coefficient equal to unity; the point (g4 ;+1) delays by
U;+1(t). The convergence point (g4 ;1)1 sums signals
and transmits them with the transfer coefficient equal
to unity. The decoder ribs [(gi, q4) 1] and [(gg;) 114
have the transfer coefficient (1—R)!/2. This, in its
turn, requires the correcting (1 — R) times attenuation in
the rib [(gin g i) 2]2. This rib has the transfer coefficient
y(1—=R) /2 and delays by «¥.;(¢) + Tt The encryption
device rib [(g;) 1], and the decoder rib [(g;, 4 ;) 1] have
the transfer coefficient (1 — R)!/2, therefore the decoder
nonlinearity coefficient should be corrected according to
the rule: Kq=-K/(1 —R)2. For a decoder with such
parameters, the following is valid: Agyq () = —
— R)2 Ay, i(t). The decoder is depicted schematically in
Fig. 2; the field amplitude in this case is corrected in the
phase shifter T

X
M, -HC M
] 2
1
Eox ; Esix
O 4
Y
[~ |
1 G
3
M4 M3

Fig. 2. Decoder layout. As the element G turns the light field
by A = 120° (in the beam cross plane), the trajectories of the
rays 1 and 3, 2 and 7, 3 and 2 after passage through the
interferometer are summed on the exit mirror.
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Different versions of nonlinear-
dynamics cryptographic devices:
classification

As is seen, the proposed formalism helps us to
synthesize the decoder scheme based on the known
route-operator scheme of the encryption device
irrespective of its real design. Moreover, now the CTP
structure, i.e., the structure of route equations, in
particular, Eq. (2) and consequently Eq. (3), can serve
a classifier for classification of already known versions
and prediction of possible versions of cryptographic
methods and devices of nonlinear-dynamic cryptology.
It is known that such classifiers in cryptology are the
following: key number (presence of an open key) and
mathematical principles forming the basis for
encryption /decryption.

It is obvious that such CTP characteristics of
the encryption device as structure (closed, unclosed,
combined), configuration (linear, converging /diverging
star, ring, fractal, etc.), and number of points —
communication channels (one, two, more than two,
infinite number) can be extended to the corresponding
classified pairs of encryption devices,/decoders.

To be taken into account is also the operating
mode of the encryption device (chaotic, static, etc.).
For example, the static mode is inevitable at the
unclosed CTP and at any constant signal at the
encryption device input.

Other natural classifiers are the possibilities of
simultaneous transmission of different messages: by one
communication channel of a given chain (simultaneous
phase and amplitude modulation), by different
communication channels of a given CTP (through the
way Gini — [ihout di), by different sets of communication
channels from different chains, as well fixation of one
communication  channel (one  of the  ways
finout i = Gind¢): for messaging, for synchronization,
and for both these purposes simultaneously, as well as
the channels intended for the above procedures.

The signal S;(¢) coming to the point gi,q; at the
time ¢ after various transformations in the decoder
becomes the information signal [In;(¢)=Fy, ;(S;(t-
—1;,1)). But it can also serves the reference signal
Bi(t) = Fg i(S;(t —15;)). In addition, S;(¢) plays the
role of an external effect on different elements of the
decoder, i.e., acts as a synchro signal. Depending on its
function, the signal S;(t) can be called information
masked, reference, or synchro signal.

The information signal I;(¢#) coming to the input
Jin; Of an encryption device in the preceeding moments
in time is separated as a result of the binary operation
— subtraction:

1;() = Ini(t) — B(t) =

=Fpi St =15, ) = Fp;[S; (¢ =15 D]
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Note that the separation procedure may be based on
different binary (+, O, etc.) or, say, Nth order
operation.

In the separation of signal I;(z), the signal
Si(t-1;, ;) is the information masked one, and the signal
Si(t — 1 ;) is the reference one. At the same time, they
both may be synchro signals, depending on whether
they actually have the synchro effect on the decoder
elements.

If the CTP is closed and consisting of a single
point, then ¢ =j. This corresponds to a single-channel
(according to the classification from Ref. 4) system of
confidential communication, although in the case of the
NRI the number of CTP’s is not limited. It should be
noted that, in radio cryptographic systems using the
chaotic  response at decryption, the equality
In;(t) = S(t) holds true and the nonlinear element is
located in the feedback unit of the encryption device
(see Ref. 17, Fig. 2b).

Thus, three functions of the signal S; at separation
of I;(t) are spaced in time: the signal S; coming to the
decoder in the period (—o; t — 15 ;) first provides for
its synchronization (first function). Then S; plays the
role of the reference signal S;(¢t —15;) (second
function). And then S;(¢) carries an element of the
message [;(t) (third function), which is separated due
to the presence of the reference signal in the pre-
synchronized decoder.

If the CTP is unclosed and consists of two points,
i.e., i # (such a situation is possible in the NRI at a
shift), K =0 and a chaotic signal comes at the first
point, whereas the information one comes at the second
point, then this corresponds to the two-channel (with a
separate channel for (passive) synchronization)4 system
of confidential communication. In the case of the NRI,
the CTP number is still unlimited.

In the event of separation of the signal I5(¢), the
signal Sy(t—1y,9) is an information masked one, and
the signal S{(¢ — 15 1) is a synchro and reference one.

Thus, the three functions of the signal S; at
separation of Iy(t) are separated in time and space (by
channels 1 and 2): the signal Sy coming to the decoder
in the interval (-w; ¢—154) first provides its
synchronization (first function). Then Sy plays the role
of the reference signal S;(¢t — 15 4) (second function).
Then Sy(¢) carries the message I5(¢) (third function),
which is decrypted.

Separation of the functions of the S; signal in time
and /or space has an effect on the noise immunity of
the communication system. Assume that additive noise
affects a communication channel. Then, at separation of
the S; functions in space, the pernicious influence on
the result of decryption is caused by the difference of
the mean (over the propagation path) noise values
<N;(#)> in the channels (for example, 1 and 2), where
t is the time, at which the signal S; comes at the ith
decoder input. At separation in time, a significant
factor is the change of the <N;(#)> level for the time
At=Mp, ;— 15,0 Of course, here we should also take into
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account the effect of transformations Fr, ;(S;(t—17, )
and Fp j(S{(t—1p ), the signals S; and S; undergo. But
we restrict our consideration only to the allowance for
the time 17, ; and 1 ;.

It is obvious that the noise immunity in the single-
channel communication system depends only on the
change <N{(t + At)> — <N{(¢)>. Generally speaking,
At is determined by the delay in the feedback unit of
the encryption device.

In the two-channel communication system with a
separate synchro channel, the noise immunity depends
on <N2(t — Ty 2)> - <N1(t — Tp 1)>, i.e., on both
these factors. However, time separation of the functions
S; can be eliminated by means of delay lines in both
channels at the encryption device input and output. If
the equality 1,9 =1p1 is achieved, only the space
difference <N,(#)> — <N(#)> has an effect.

Thus, if the condition <N (¢t + AD> -
— <N ()> <<<Ny()> — <N{(t)> or <N(t + AT)> —
— <N (t)> > <Ny(t)> — <N{(t)> is fulfilled, then a
single- or two-channel system of confidential
communication has an advantage in the relation to
noise immunity. Note that Ref. 4 points to the
advantage of the latter.

Apparently, different ratios between the numbers
of channels (number of points in the CTP) intended for
messaging and synchronization are possible in an NRI-
based communication system. This gives rise to
differences from the known systems. Let, for example,
the laser beam be turned by the angle A = 2mm/m or
undergo specular reflection in the NRI, i.e., a closed
CTP takes place. If the nonlinear element in the
encryption device and decoder is located just before the
element G on the beam path (Fig. 3, where the field
amplitude is corrected in the phase changer 1), and
Ky=K/(1 = R), then the following situation is
possible.

The communication channel fing,; - ginq; is used
to transfer the signal S;, which is both synchro and
reference one with respect to the information masked
signal  S;4q  transmitted  through the channel
fingut i+1 = Gindi+1- In its turn, the signal S; is used as a
synchro and reference one with respect to the information
masked signal Sjip transmitted through the channel
fingut i+2 - Gin d i+2, etc. In other words, every signal S;
(channel  fingy; - gina;) carries information and
simultaneously serves a synchro and reference one for
Si+1. Thus, there is no need in service (only synchro)
channels.

If the laser beam is shifted in the NRI, i.e., the
unclosed CTP takes place, it is wise if the signal S
(channel fingy 1 - gin q 1) serves both the synchro and
reference one, but caries no information. The rest
signals and channels, as in the previous example, can
play all the three parts. In this case, the fraction of the
service channels is determined as the ratio 1,/m, where
m is the number of CTP points. In the two-channel
systems with a separate channel of (passive)
synchronization,4 this fraction equals 1,/2.
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Fig. 3. Encryption device (¢) and decoder (b) with NE in the
feedback unit of encryption device. Ray trajectories correspond
to the turn of the light field direction of propagation by the
angle A = 120°.

Processes in the hidden optical information
transfer system based on a pair of four-mirror
interferometers ~ —  generators  of  deterministic

spatiotemporal chaos were modeled in Ref. 8. In this
system, the decoder operated in the mode of active
synchronization. The model accounted for diffraction, a
saturable absorber served as a nonlinear medium, and
the depth of spatial amplitude modulation by the
information signal was likely 0.005. The transfer of a
static image was imitated. As a result of decryption, the
image became rather distinguishable at the transfer
coefficient of 0.7, but it was still reconstructed with
some distortions.

Assume that the decoder output mirror OM in
Fig. 4 in the system proposed in Ref. 8 is totally
reflecting. Thus, the feedback in the decoder is broken,
and it losses the capability of generating chaos and
turns into the nonlinear discriminator. Assume also that
the signals M(x, t) and A; come to the encryption
device not separately, but as a superposition (in the
direction of M(x, t) in Fig. 4). Correspondingly, the
wave amplitude Ay = 0. Then the structure of the pair
of interferometers (encryption device + decoder) in
Fig. 4 is almost equivalent to the pair of
interferometers shown in Fig. 3, if the last element G is
removed or it is assumed that A =27 If in Fig. 4 we
increase the degree of nonlinearity of the decoder
nonlinear element, then exact reconstruction of the
signal probably becomes possible, similarly to that in
the system shown in Fig. 3. Remind that in this paper
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we simulate the mode of chaotic response ignoring
diffraction. It should be noted that an obvious
disadvantage of the scheme shown in Fig. 4 is the
requirement of coherence of the three laser beams: Ay,
Ay, and M(x, t).

M(x,t)
\

>
-

/ Mz, t)

Fig. 4. Scheme of spatial and temporal information transfer
using optical chaos.8 CM and OM are communication and
output mirrors; Ay and Ay are the amplitudes of the plane waves
constantly coming to the resonators; M(x, t) and tilded M(x, t)
denote the encrypted and decrypted signals; [ is the length of the
nonlinear element (saturable absorber); L is the optical length
of the interferometers.

Imitation of hidden image transfer:
mode of deterministic space-time chaos

Let us give some examples of imitation of image
encryption /decryption by the method of computer
experiment based on the models (1) and (3) as applied
to  confidential communication systems shown
schematically in Figs. 1 and 2.

The results obtained for the case of closed CTP
consisting of four points (A =90°, 1,=109s, R=0.5,
te =Ty, Y=0.5) are shown in Fig. 5. Here the depth of
spatial modulation of the laser beam amplitude equals
0.048, what is roughly ten times higher than in the
model from Ref. 8. From this a possibility of
decryption /encryption of a 2D image represented by a
sequence of frames follows for the encryption device
operating in the mode of deterministic space-time
(dynamic, in other words) chaos. From visual analysis
of the images shown in Fig. 5 we can conclude that:

— with the increase of time ¢/1,, the signal hiding
increases;

— the period of encryption device “warming-up” is
no less than 51,;

— hiding and the rate of its increase depend on the
NRI parameters.

The increase in the signal hiding with the increase
of the nonlinearity coefficient K of the NRI can be
estimated by the methods of spectral analysis considering
Figs. 6 and 7. These figures show time realizations, phase
portraits, and Fourier spectra of the wave amplitude A;
at the output, where i is the number of the
transpositional point in the CTP, D, = 0.
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Encryption device Encryption device output

t/1, | input and decoder D.=0 D.=1073
output

10

15

25

Fig. 5. Frames of the process of imitation of image encryption /decryption in the mode of dynamic chaos at different values of the
nonlinearity coefficient K and the normalized diffusion coefficient D, in NRI.
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Fig. 6. Time realization of A; (a), phase portraits (b, ¢), Fourier spectra S, of the output wave amplitude A{ (d, e) in the free
running mode (a (bold curve), b, d) and the mode of amplitude modulation (a (thin curve), ¢, e). Ay = A(r, t), where r = (0.5, 0);
Az =A(r, t), where r=1(0,0.5). K=4.55 The modulation law: A (r, t) =[1+0.01 Ccos(21; £)],/1.01, where
fi=1,/(30.618 01079) = 0.3266 108 corresponds to the frequency of the Fourier spectrum harmonic having the maximum
amplitude (d).
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Fig. 7. Fourier spectra S, of the output wave amplitude A; (@, ¢) and phase portraits (b, d) in the free running mode (a, b) and
the mode of amplitude modulation (¢, d) at the same parameters as in Fig. 6. K = 10.
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Imitation of hidden image transfer:
mode of deterministic spatial chaos

Figure 8 proves the possibility of encryption
/decryption of a 2D image with the encryption device
operating in the static mode. The signal hiding in this
case depends on the NRI parameters. The static mode
meaning the absence of changes in time does not
exclude, however paradoxical it is, randomization of a
static  spatial  structure (two-dimensional, three-
dimensional, N-dimensional). Therefore, we propose to
call this phenomenon deterministic spatial chaos. The
term “deterministic,” as generally accepted, points to
the fact that disorder obeys some regularity dictated by
the mathematical model, rather than originates from a
random factor. In this way, we emphasize the
analogy / contrast with the widely known temporal, i.e.,
dynamic (deterministic), chaos in the models of one-
dimensional systems and the space-time chaos, or
turbulence, in the models of multidimensional systems.
The deterministic spatial chaos naturally opposes the
spatial order demonstrated by objects possessing some
symmetry, fractals, etc. Visual analysis of Fig. 8
evidences the principal possibility of existence of the
deterministic spatial chaos.

Chain of transpositional points as an
equivalent of discrete mapping

In our case, the deterministic spatial chaos is
realized in the model consisting of algebraic equations (or
equalities for unclosed CTP) following from Eq. (1),
when 0U(r, t) /0t=0 and DeAny(r, t)=0. As was
shown above, the route-operator equation (2) is an
equivalent of the algebraic equations (or equalities). In
this case, it is proposed to consider the values of the
dynamic variable (U(r, t) or laser beam amplitude
ANg(r, t)) at CTP points as its values at the points of the
discrete map. Thus, we establish a relation between the
differential equations for the static mode and discrete
maps. In our opinion, it is an alternative of the classic
relation!8:19 between the differential equations for the
dynamic mode and the maps based on Poincare cross
sections. Therefore, it is logical to treat the number of a
transpositional point in the chain as a discrete evolutional
variable.

In the dynamic mode, the values of the dynamic
variable (U(r, t) or Ayg(r, t)) at CTP points also can
be treated as its values at the points of the discrete
map. But in this case, besides the traditional discrete
evolutional variable (the number of a transpositional
point in the chain), a map has a continuous evolutional
variable (time ¢ in the model (1) or (2)) responsible
for transformation of the CTP as a whole. It is obvious
that the relation between the values of the dynamic
variable at the points of such a discrete map becomes
not so trivial, as in the static mode. As applied to the
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NRI, this relation is present implicitly in the model (1)
and explicitly in the model (2). Thus, the problem of
studying processes in the NRI within one CTP can be
reformulated as a problem of studying the evolution of
discrete maps.

If the CTP is closed, then discrete mapping turns
out to be periodic with the period equal to the number
of the CTP points. The unclosed CTP assumes four
possibilities: (1) finite number m of CTP points;
(2) infinite number (m = ) of CTP points in the chain
having such a point numeration that: (a) the number of
the initial point is 1 and the number of the end point is
o, (b) the number of the end point is 1, and the
number of the initial point is —, (¢) the numbers of
the initial and the end points are respectively —co and
. As far as we can judge, in the cases (b) and (c),
when the first point is unknown, one has to deal with a
rather specific problem, for example, within the
framework of the model (1) and (2): if we would like
to know the evolution of at least one point in a chain,
then we have to take into account the effect of the
infinite number of points preceding it in the CTP.

It is clear from physical reasoning that operation
of the encryption device can be characterized by the
“warming-up” period T, (in the mode of space-time
chaos) and the period of establishment T, (in the static
mode), whereas the decoder operation can be
characterized by the period of synchronization
establishment 15, Let us consider the estimation of the
efficiency of these devices in the above modes for the
cases of transfer of a single image or a series of images.

If only one image is to be transferred, then the
time needed for encryption in the static mode is
determined by the time T, of establishment of the
processes in the encryption device (NRI). This time
depends, in particular, on the CTP length. In this case,
the receiving part has to receive only the established
image at the encryption device output (cryptogram) for
decryption. Therefore, if the decoder is equipped with a
device for cryptogram storage, then the message length
T, is determined by its speed. If there is no such a
device, then 1, =T1,. The time needed for decryption is
determined by the time needed for establishing
synchronization Ty.

Two versions are possible in the mode of space-time
chaos. If the encryption device and decoder are pre-
synchronized, i.e., the corresponding initial conditions
are preset in them, then the time needed for encryption,
for decryption, and 1, are determined by the “warming-
up” period T1},. Otherwise, the decryption time and T,
are determined by the time T, and the encryption time
is equal to the largest of 1}, and 5.

If a series of images is to be transferred, then the
process of transfer of every image in the static mode is
identical to transfer of a single image. In the mode of
space-time chaos, the transfer of the first image is also
identical to the transfer of a single image. The
following images can be transferred as fast as allowed
by image change rate and recording units (possible
decrease or increase in cryptographic resistance at that
fast transfer is not considered here).



1.V. Izmailov and B.N. Poizner

Vol. 14, No. 11 /November 2001,/ Atmos. Oceanic Opt. 999

Encryption device output

Encryption device input
and decoder output

Fig. 8. Imitation of image encryption /decryption in the static mode of NRI at different values of the nonlinearity coefficient K and
the normalized diffusion coefficient D,. The laser beam in the NRI feedback unit is subject to shift along the axis Ox by 1,80 (a),

compression 0 = 0.9 (b), specular reflection about the axis Ox (c).

It is reasonable to believe that the following
inequality is fulfilled: T4 < 1, < T,. Then the static mode
seems preferable, if the limiting factor is the capacity or
price of the communication channel, as well as if the
task is to store information in the encrypted form.

Obviously, simulation of an optical device of
nonlinear dynamic cryptography leads to the problem of
multiparameter optimization of this device and its
possible analogs and versions.

Conclusion

In this paper, we have justified the possibility of
and outlined the ways for developing optical devices of
nonlinear dynamic cryptography using, as an example,
a nonlinear ring interferometer.

Some methods of description and organization of
radio and optical systems of nonlinear dynamic
cryptography have been leased. In particular, the
nonlinear ring interferometer (see Fig. 1) has been
interpreted as a generalized structure model of
encryption devices. The route-operator description
forms the basis for such generalization. Further
development of this approach has allowed us to propose
new bases for classification and versions of
implementation of hidden information transfer based on
devices of nonlinear dynamic cryptography.

The operation with the concept of CTP (chain of
transpositional points) has served as a basis for the use
of the theory of graphs. As a result, we have succeeded

in constructing the language for CTP description. On
its basis, we have developed the route-operator
formalism oriented at the study of systems, whose
physical interactions have the structure of a graph, in
particular, ring systems. The model of process in the
NRI-based encryption device has been described within
this formalism [route-operator equation (2)]. If such
models are treated as equations for the unknown input
signal, this can serve the methodology for synthesis of
the route-operator model of the decoder using a chaotic
response. Application of this methodology has led us to
the decoder model (3) and, in its turn, to the optical
scheme of the device of nonlinear-dynamic cryptography
(see Fig. 2).

A version of the decoder model (see Fig. 3) has
been compared with the scheme of space-time relation in
the mode of chaos synchronization8 (see Fig. 4), and
disadvantages of the Ilatter and the ways of its
transformation into the scheme shown in Fig. 3 have
been demonstrated.

The efficiency of operation of the encryption
device has been estimated in the mode of space-time
chaos and in the static mode.

The relation of the CTP with the discrete maps has
been revealed for the static and dynamic modes. The
possibility of formulation of the problem on evolution
of discrete maps as an instrument for studying processes
in the NRI within one CTP has been demonstrated.

The concept of deterministic spatial chaos arising
in the mode of a dynamic system, for example NRI, has
been put forward.
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Some examples of computer imitation of
encryption /decryption of two-dimensional images in
the modes of space-time and spatial chaos have been
presented (see Figs. 5 and 8). The influence of
nonlinearity on the degree of communication
confidentiality in the mode of space-time chaos has
been analyzed with the use of Fourier spectra and phase
portraits (see Figs. 6 and 7).

On the whole, the heuristic potential of the route-
operator formalism has been demonstrated as applied to
the study of signal transfer in optical nonlinear ring
systems.
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