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The closed integrodifferential equation for the mean field in a medium with spindle-shaped
inhomogeneities oriented along the direction of propagation of an incident wave is derived using local
Chernov’s method. Diffraction by the inhomogeneities and the change of the scattering efficiency with
small changes in the wave propagation angles are taken into account. The derived equation is analyzed
for the cases of weak and strong anisotropy. It is proposed to use the results of this study for analysis of
data of remote sensing of randomly inhomogeneous media.

The statistics of waves of various natures in large-
scale randomly inhomogeneous media is now studied
rather thoroughly. As a rule, analysis is based on
equations for moment functions of waves. Such equations
derived in the small-angle approximation of quasioptics
and the Markovian approximation have become classic
and can be found in many books (see, e.g., Refs. 1-3).
However, these equations are inapplicable in the media,
where random inhomogeneities are oriented along the
direction of wave propagation, because they do not
describe a significant change in scattering at minor
variations of the wave propagation angle, as well as
weakening of scattering due to diffraction by the
inhomogeneities of the medium. At the same time, the
situation of a statistically anisotropic medium is quite
widespread. Thus, ice crystals in clouds have a shape of
cylinders oriented randomly in space.4 An example
important for the ocean physics is random inner waves,
because the horizontal scale of the spatial correlation of
sonic speed fluctuations is known to be always much
larger than the vertical one.>

When deriving equations for the moment functions
of waves in such media, it is necessary to reject the
Markovian approximation ignoring the finite longitudinal
scale of correlation of medium inhomogeneities. The
equations for the moment functions of waves in underwater
acoustic channels (the case of cake-shaped inhomogeneities)
were considered in Ref. 6.

In this paper, we derive and analyze equation for
the mean field in the medium with spindle-shaped
inhomogeneities oriented along the direction of wave
propagation. This model corresponds to the structure of
clouds with high content of ice crystals and the obtained
results can be used in remote sensing of such clouds.

1. Equation for the mean field

In the small-angle approximation, the propagation
of a wave is described by a parabolic equation
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where u(x, p) is the complex amplitude of the wave; x
is the longitudinal coordinate; @ = {y, z} are cross
coordinates; A is the Laplacian in the cross plane;
k=2m/N is the wave number; A is the wavelength;

E(x, p) describes fluctuations of the medium refractive
index with the given correlation function

Eg(x, (1)) b + 1, P+ 1p0= B,(1)

(the angle brackets denote averaging over an ensemble
of realizations of random inhomogeneities in the
medium).

Using Eq. (1), we can derive equation for the mean
field @(x, p)O of the wave in the case of medium
inhomogeneities oriented along the axis x. Averaging
Eq. (1) gives
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The mixed moment Dp(x, p) u(x, p)O entering into
Eq. (2) can be expressed through @Oand B, using the
Chernov’s local method of small perturbations.27
Following this method, we assume that in the layer

[x — 1, x], where [ = [, [, is the scale of correlation of E
along the axis x, medium inhomogeneities weakly affect
the wave. Therefore, we can write the field in the
mixed moment in the Born approximation:

uCx, p) = up(x, P) + uy(x, p), 3

where the zero approximation wuy(x, p) is the complex
amplitude of the wave in the case when no
inhomogeneities in the layer [x — [, x] occur;
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Let us represent ug(x, p) as an expansion into
plane waves
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up(x, p) = I ddyy(x, 8) exp (ik8p), 8 = (a, B)

—00

(the angle a is measured in the horizontal plane; B is
the vertical component).

Since the complex amplitudes of plane waves in a
homogeneous medium obey the law

Wolx, ) = Yo', B) exp [~ (k8 /2) (x — 2],

expressing ug through gy in Eq. (4) and taking into
account the last equality, we obtain
i

uy(x, p) = ik J d9Yy(x, 9) exp (ikdp) j dr, x
—o0 0
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Let I be the smallest scale of the inhomogeneities I
along the cross coordinates. Then the inequality

T A/l <<1 (6)

corresponds to the ray-optics approximation: the
characteristic size of the “aperture” I is much larger than

the radius of the first Fresnel zone \/lo A. In this case

uy(x, p) =ik J ddyy(x, 9) exp (ik9p) x

I
x J' dt, ix -1, p - 91,). (7
0

Note that the condition (6) can be rewritten as
RIZ/1,>>1 or 9, >9, (8)

where 9, = I/, is referred to as the angle of anisotropy,
and 8, =1/klg is the scattering angle. Let wus
introduce the parameter of anisotropy as m =94 /9, =

=1/ k2. We speak about weak anisotropy, if the
condition m <<1 is satisfied. Thus, representation of the
field in the form (7) is possible just in the case of weak
anisotropy. For example, if I5 = [,, then the condition (8)
transforms into kI, >1 or 9, <<1, i.e., the condition
of large-scale medium inhomogeneities. This condition
must be satisfied for the parabolic equation (1) to
be wvalid. Therefore, in the case of isotropic large-
scale inhomogeneities, when Eq. (1) is wvalid, the
approximation (7) is valid too. It is obvious that
condition (8) and the approximation (7) are true for
the inhomogeneities that are “oblate” (I, <[y) along
the axis. It should be noted that if 8%, is the largest (in
the absolute value) wave propagation angle measured
from the axis x, satisfy the inequality

9* <9, (9

what is equivalent to the condition dt, O09*], <[y,
then the approximation (7) reduces to a simpler form:
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X
ui(x, p) = ik uy(x, p) I dx' g(x’, p).
x—l
Substituting this equation into Egs. (3) and (2)
yields equation for the mean field in the Markovian
approximation. The situation becomes different in
principle, if random inhomogeneities are oriented along
the direction of wave propagation, that is, if [, > Iy
and, consequently, the anisotropy angle 9, <<1. In this
case, the conditions (8) and (9) may be violated, even
if the parabolic equation (1) is applicable. Therefore, in
deriving equation for the mean field in this case, one
should use equation (5) that allows for diffraction by
the inhomogeneities and variation of scattering at small
variations of the wave propagation angles, rather than
the approximation (7). Then, under condition that
extinction of the mean field due to scattering is low in
the layer with the thickness [ O/,, we obtain closed
integrodifferential equation for the mean field

o0 R
o Do Gl g I dp @ (x,p— p)u(p') =0, (10)
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where
a(p) = B%TBZ J d® A(®) exp (ik 89p);
A(®) =8I dr, I dtg B, (t,, 15+ 81 )2T§T exp %2'[ D%
0 —00

2. Analysis of aspect sensitivity

The form of Eq. (10) for the mean field is
different in the cases of weak and strong anisotropy. To
demonstrate this, let us consider the case, that can be
practically interesting, of spindle-shaped
inhomogeneities having the scale [/, along the axis x and
the scale In < [, in the cross plane yz. For definiteness,
let us take the Gaussian correlation function for the
inhomogeneities

B,(1,,1p) = 02 exp [~ 12 /212 — 12 /212).
This gives
T dt
A(3)=803,IOJ -

0
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Let us consider the asymptotic behavior of the
coefficient A(8) in the case of weak and strong
anisotropy. As follows from Eq. (11), at m <<1 we have

a(p)——80
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A®) = 42 al 1,1 + 8292 .

If /9, <<1, i.e., the wave propagates at a small angle
to the axis x, then the extinction coefficient proves to
be constant:

A®) = Ay = 4\[2m a2 I,
Then from Eq. (12) we obtain
a(p) = Ay 3(p).

The resulting equation for the mean field is the
same as in the Markovian approximation:

amO E2

3 25 Ao @O+ g Ay @O= 0. (13)
In the other limiting case (m >>1), we can find

from Eq. (11) that the coefficient A no longer depends

on the scattering angle:

iy =g 2 [ 020
A(®) = AW0) =80 [, j TSP T30
0

wherefrom it follows that equation for the mean field
has the form similar to that of Eq. (13), but different
extinction coefficient, because it decreases due to
diffraction by strongly oblong medium inhomogeneities.
The above-said is illustrated in Fig. 1, the plots in
which correspond to different values of the parameter m.
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Fig. 1. Dependence of the real and imaginary parts of the
extinction coefficient on the angle & at different values of the
anisotropy parameter.
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Let us now analyze the behavior of the extinction
coefficient A at 9 =0 as a function of the anisotropy
parameter. It is seen from Fig. 2 that at strong
anisotropy the coefficient A decreases sharply tending
to zero in the direction of incident radiation. Since this
coefficient —accounts for scattering by medium
inhomogeneities, this means that the field in the
direction 8 =0 decreases — rays deflect from their
initial direction.
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Fig. 2. Dependence of the real and imaginary parts of the
extinction coefficient on the anisotropy parameter at 8 = 0.

The appearance of a local minimum in the angular
distribution of the ray intensity in the direction of the
longest correlation length of inhomogeneities was
actually found at statistical simulation of light scattering
by oblong inhomogeneities8® (note that the effect is
not observed in the case of isotropic or oblate
inhomogeneities). A more detailed analysis based on the
transfer equation for the ray intensity is beyond the
scope of this paper. However, it can be shown that the
obtained angular dependence of the extinction coefficient
leads to the appearance of maximum in the ray diffusion
coefficient for the direction at & = 0.

The behavior of rays in the medium with such a
diffusion coefficient can be interpreted illustratively by
using known analogy between optical rays and medium
particles. 10 Let us consider Brownian particles being in
the medium with the random temperature field. Since
the particle diffusion coefficient at a constant pressure is
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directly proportional to temperature, particles are pushed
out from warmer areas to colder ones and stay there for
rather a long time. As a result, the mean concentration
of an admixture is minimum in the areas, where the
diffusion coefficient is high.

Similarly, in the problem on wave propagation
considered for the case of statistically inhomogeneous
medium, in which the diffusion coefficient has a
maximum in the direction of wave incidence, rays
deflect from this direction and the resulting distribution
of the ray intensity has two maxima.

Since the determined angular dependence A(8) is
caused by the oblong shape of random inhomogeneities,
the obtained results are applicable to analysis of data
on wave scattering at remote sensing of randomly
inhomogeneous media.
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