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The well known generalized Euler transformation of divergent series is applied to summation of
Dunham series for diatomic molecules. The equation for the energy of a Kratzer oscillator, which is an
exactly solvable problem of quantum mechanics, is used as an approximation function that is needed for
series transformation. The transformed series consists of a main part, which is asymptotically correct for
high values of vibrational and rotational quantum numbers, and an additional part depending on new
variables, which are less than unity for all values of quantum numbers. New representation of the
Dunham series may prove useful for calculation of highly excited rotational-vibrational states of diatomic
molecules, for which only several first coefficients of the perturbation series are known.

To solve some problems of atmospheric spectroscopy,
one has to calculate highly excited rotational-vibrational
(RV) states of diatomic molecules and radicals. The
frequencies of RV transitions of diatomic molecules are
usually presented as power series over vibrational
(v +1,/2) and rotational J(J + 1) quantum numbers —
Dunham series. From the theoretical point of view, this
representation is a result of applying perturbation
theory (PT) to calculation of energy levels.

The observed values of line positions are usually
used as input data for determination of the coefficients
of the Dunham series by the method of least squares.
Then the series obtained in such a way is used to
predict the positions of lines with higher values of ©
and J or to reconstruct the potential-energy function of
a molecule.! Obviously, the Dunham series determined
in PT has a limited domain of convergence — it may
diverge at high values of the quantum number of angular
momentum J. So, it is necessary to apply special methods
for summation of divergent series when calculating
highly excited states of diatomic molecules.

Nowadays many papers (see, for example, Refs. 2-9)
are devoted to application of different summation
methods to calculation of RV spectra of diatomic
molecules. In Ref. 2-6 a method was proposed for
calculation of high energy levels of diatomic molecules.
This method is based on “nonlinearization” and “1,/ N-
expansion”; it provides for a good agreement with the
experimental data for some molecules even for RV
energy levels close to the dissociation threshold. In
Refs. 7-9, a special version of PT was used, which
gives rational approximations of RV energy levels of
diatomic molecules. The calculations performed for H,
and HBr molecules have demonstrated a marked progress
in calculation of energy levels of highly excited states
as compared to the traditional approach.

The aim of this work is to derive a new
representation for the Dunham series using different
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approach — the so-called generalized Euler
transformation.!0 As an approximating function needed
in the Euler method, we use the well-known solution of
the problem on the Kratzer oscillator.!! This solution
has a correct asymptotic dependence on the vibrational
and rotational quantum numbers. It allows us to use
some a priori information on the RV energy of diatomic
molecules contained in the approximating function
when summing up the Dunham series and to correctly
simulate high terms of the Dunham series. The Euler
transformation “separates out” the main part of RV
energy and, therefore, the transformed series possesses
better properties and converges at large values of the
quantum number J.

The new representation of the PT series for two-
particle systems may prove useful in the cases that only
several first terms of the series are known and other
summation methods have thus limited applicability. On
the other hand, the new representation of the Dunham
series can improve processing of RV spectra of diatomic
molecules.

1. Generalized Euler transformation

For a convenience, we briefly present here the
main equations of the Euler method. 101213 Let the
function f(z) be expanded into a series as

£()= an o (1)

and some its estimate — approximating function — be
known:

g(2)= ngnz” =gyt g1z +gazi+.... 2
=
Let also the following condition be fulfilled:
an = fn/Gn - 1 (3)
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at n - . Then the initial series (1), which may be
divergent, can be transformed into a convergent one (or
more rapidly convergent, if the series (1) converges
slowly) in the following way:

f0+f1z+f222+...=aog(z)+(a1—do)g12+

+ (ay — agp) 9222+(a3—a0) g3z3+... . (4)
Then make use of the fact that!0
g1z=9'(2) 2—29222 —g323 - .- ng, "+ ...,

299 2= g"(2) 2 - 693 2 - 1294 A=
-n(n—-1)g,2" + ..., (15)

n_ (n) n+1
nl g,z =92 "= g2 — ...,

and transform the series, excluding the coefficients g,
successively from the transformed series. We obtain

f(2) = ag g(2) + (a4 — ap) zg'(2) +
+ (ay — 2a; + ag) zzg"(z)/Z! +
+ (ag — 3ay + 3a; — ap) 229" (2) /31 + ... +

) 2" () /nl. (6)

If the condition (3) is fulfilled, then the coefficients of
the transformed series tend to zero. If it also proves
possible to introduce a new variable

Z= n\[z" ¢ <1, )]

weakly dependent on n, then the transformed series is a
series over powers of Z and often turns out to be
convergent.

The Euler transformation was earlier successfully
used for summation of divergent PT series in some
quantum-mechanics  problems, for example, for
calculation of energy levels of anharmonic oscillator,
calculation of the Stark and Zeeman effects for
hydrogen atoms in strong fields, summation of 1,/Z-
series in theory of atoms (see, for example, Refs. 12
and 13). As known, !4 the Euler method is regular, that
is, it gives correct values of sums for convergent series.

The series transformed by the Euler method can be
represented in the form

f(2)= ( 1)"D

+ (an —na,—t+ ..

—"d— 9(2);

D, :;(‘1)7(?)’% a; =1i/9i-

Consider, as an example, the approximating function
g(2) of the form

(8)

g(2)=1/(1+2)=1—2+22—...,

no_ .z
gn_(_ 1) 729(2) (1_’_2)27
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Zzg”(z)_ 22
2 T+

9

Then the initial series (1) transforms to the following
form:

f(z) = 1

X
+z

<o+ i B D+(fz+2f1+fo)D+ DB ao

In Eq. (10) we can introduce a new variable, Z=z,/(1 + z2),
which is obviously less than unity at z > 0. Transformation
with the approximating function (9) and transition to a
new variable often provide for better convergence of
the initial series. 12

2. Dunham series of diatomic molecules
and Kratzer oscillator

Application of the perturbation theory to calculation
of rotational-vibrational energy levels of diatomic
molecules yields the following equation:

E(,0)= Y Yalo+ 1/ 2P0 +1", G

n,m

where v is the vibrational quantum number; J is the
quantum number of angular momentum, and the series
coefficients Y, are called the Dunham coefficients.
They are related in a certain way to the coefficients of
expansion of the potential function into series over
powers of the displacement from the equilibrium
position.! Equation (11) can also be presented as

E(e,g)=% enly)a”, (12)

m

where ¢, (y) are some functions presented by the
following series:

cnly) = ZY ", (13)

where

y=o+1/2; x=J U +1); E0,0 =0 (14

If the coefficients of the series (11) are known, then
the functions ¢,,(y) represented as the series (13) can
be determined using suitable methods, for example,
Pade or Pade — Hermite method. Below we assume them
to be given and we shall present them as sums (13) or
finite equations determined by some summation method
or values found from experimental data.

The Kratzer equation!! describes the rotational-
vibrational energy levels of a diatomic molecule with
the potential function

V(r) = %
,

~ |

(15)
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The Shrgﬁinger equation for the radial part of the wave
function with this potential has a correct solution and
energy levels are values of the following function, which
will be referred to as the Kratzer function,

KU, 0)—alo+1/2+JU+ 1) +b] 2+
+a[1/2+~b]%=-aly+x+b %+
+all/2 +\ﬁg]_2;
a=B/Qm); b=1/4+24pn/0%.  (16)

Here p is the reduced mass; the energy is measured
from the zero level v = 0, J = 0. The constants ¢ and b
can be expressed also through the dissociation energy
E4 and the equilibrium distance r:

a=2E3r u/n% b=1/4+2E4 v’ u/ 1.

Equation (16) can be used for transformation of
the Dunham series to a more convenient form so that
the transformed series has better convergence and the
function corresponding to it is asymptotically correct at
large values of v and J.

The Kratzer equation gives the qualitatively correct
asymptotic dependence — energy levels are concentrated
in the interval determined by the depth of the potential
well, at the same time the asymptotic behavior of the
Dunham series at large values of y = v + 1,/2 depends
on the sign of the highest term kept in the series (13).

3. Transformed Dunham series

Using Egs. (8) and (16) for transformation of the
series (11), after some long, but simple transformations
we can obtain the following equation:

E(x, y) = K(x, 9) dy(y) — [a/(y +\x + D)?] Z;(x) x
x Zy(x, y) Z)dn(y) o, (x, ) Z1(x), 17)

where Z{(x) = x/(x + b) and

n

b,(x, ») = anm Z%(x, y) (18)

are n-power polynomials of the variable Z,y(x, y) =

=+lx+b/(y +x+b). The general equation for

¢,(x, y) looks rather bulky and therefore it is omitted
here; several first terms are given below:

dolx, y) =1,

01Cx, ) =1 [1+ 325z, P,
02z, ) =5 11+ 32y(x, ) + 423z, ], (19)

1
b3(x, ) =57 [5+15Z5(x, y) + 2475(x, y) +575(x, Y1,
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1
b4l 9) = o5 17 + 2125(x, y) + 36Z5(x, y) +
+ 4025(x, y) + 2475(x, 1.

Note that the coefficients of the polynomials are such that

n

anm =1.
m=

The vibration-dependent  parameters d,(y) are
calculated by the equation

:n+1 3 iB7+1ECi_(y)
d,(y) l;( 1) 10 0l (20)

where

19
50 =50 K 0|, @D

are the coefficients of expansion of the Kratzer function
into a Taylor series over the x variable. Several first
functions d,(y) are given below:

1 co(y)
W) = D - (2 (y+\D)(1/244[D),
do() = du(@) = c1(y) (g + B\, 22)
4372

X

A1) = do(y) — = ¢ (g + B b -

() (y +[b)"
(y + 4’\/79)

The general equation for d,(y) can be easily
derived from Eq. (20). Note that since co(1,/2) =0,
the term with d,(y) has no singularity at o = 0.

In this paper, we perform general analysis of the
transformed series (17); the use of a new representation
of the Dunham series for calculation of highly excited
energy levels of diatomic molecules will be presented in
our further papers.

The first term of the transformed series (17)
contains the Kratzer function K(x,y) and,
consequently, has a correct asymptotic at large values
of vibrational and rotational quantum numbers.* This
term obviously gives the large part of rotational-
vibrational energy. The factor d,(y) is the ratio of
coly) =y and go(y) = KO0, 0v+1/2) — pure
vibrational terms in the energy expansion into a power
series over the parameter x = J(J + 1). This factor can
be considered as a “correction” accounting for
inaccurate reconstruction of the vibrational energy of
molecules by the approximant — the Kratzer function.**

a

* Under the condition of correct asymptotic behavior of
coy) at y—oo.

" Recall that in our approach ¢,(y) are empiric
parameters.
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The second term in Eq. (17) is obviously a
correction to the rotational energy of a molecule. The
variables Z{(x) and Z,(x, y) are always less than unity
at =20, y>1,/2. The dimensionless parameter

b=2D rgu/h2 is usually of the order of 103 (for
example, b = 3830.5 for HI).

Thus, at J 0100 the variable Z;(x) has the value
about 0.7. The variable Zy(x,y) is close to unity at
practically significant values of x and y (Z»(x, y) varies
within 0.99-0.86 for the HI molecule at x = 0 ... 10000,
y =0.5... 10.5), and it decreases for higher vibrational
states. The transition to new variables at transformation
of the series (17) provides for better convergence of the
transformed series, unless the series coefficients increase
catastrophically fast with the growth of n.

4. Convergence of the transformed series

Consider now conditions for the series (17)
convergence. The radius of convergence of the
transformed series obviously depends on how correctly
the Kratzer function (16) reproduces the dependence of
energy on the rotational quantum number. We can see
that the functions ¢,(x, y) are positive and less than
unity at all values of J. Then the radius of convergence
of the series

(o]

;l dn(y)|Z1n (x) (23)

is a lower boundary of the radius of convergence of the
series (17). According to Eq. (20), the coefficients
d,(y) are combinations of the ratios c¢;(y)/g;(y) —
vibrational, rotational, and centrifugal terms in the
power series over J(J + 1). In the case that the Kratzer
potential well reproduces the intramolecular potential,
the Kratzer equation (16) also must reproduce the first
derivatives of energy with respect to the variable
x = J(J+1) rather well, whereas the derivatives of high
order are likely reproduced with a large error. It is
reasonable to assume that the values of d,(y) increase
with the growth of n no more rapidly than nl do and
we can introduce the estimate of the following form
(valid, at least, for some set of vibrational states)

|d,(y)| < n'e, (24)

where € is some value. Then the series (23) is reduced to

[

Z nlz(x). (25)

As known, the series (25) converges at Z{(x) <1 and
any integer L; consequently, the initial series (17)
converges too.

Thus, if the derivative ratio ¢;(y)/g;(y) is a
limited value at all n or increases not very fast with the
growth of n, then the transformed series converges at

all x = J(J +1).
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To illustrate the possibility of making estimates of
the type (24), Fig. 1a shows the dependence of the
parameters d,(y) of the HI molecule on the quantum
number y = o + 1,/2 and Fig. 1b shows the dependence
of these values on n (n=1...3) for v =1 and v =6. It
can be seen that the dependence on the vibrational
quantum number and the dependence on the index # is
well approximated by linear functions; besides, all d,(y)
are positive. All molecular and spectroscopic constants
of the HI molecule that are used in calculations were
borrowed from Ref. 15.

—dy
3 7
2.5F
2f
i d,
1.5F
1E i

Fig. 1.

The series (17) can be summed up approximately in
the following way. Since the variable Z5(x, y) is close to
unity, we assume Z»(x, y) =1 and ¢,,(x, y) =1 in Eq. (17)
and represent d,(y) by the following polynomials:

d,(y) = €o(y) + ney(y) + nex(y) + ... + nle; (). (26)

Thus we obtain

E(x, y) = K(x, y) do(y) — [a/(y +x + b)?] Z;(x) x

L 0
x Zsi(y)Zniqu(x). 27)
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The sum of the series in the right-hand side of Eq. (27)
can be easily calculated by the equation

00

Z)nLZ{’(x):HliBLL . (28)
B

Thus, the RV energy of a diatomic molecule can be
represented by a finite expression. For example, at L = 2:

ECx, y) = K(x, y) do(y) — [a/(y +[x + b)?] Z,(x) x

XE go(y) +81(y)Z1(x)+£2(y)Z1(x)[1+Z1(x)]E (29)
-z [1-7,0)P M-z 0O

In deriving Eq. (29), it was also assumed that
the derivatives of the approximating function
8" /9"K(x, y)O,—¢ correctly reproduce the signs of
derivatives of energy with respect to the variable
x =J(J +1). In particular calculations, d,(y) or g(y)
can be considered as some vibration-dependent
parameters that are determined from solution of inverse
problems. For this purpose, it is sufficient to represent
them as power series with the coefficients determined
from fitting to measured line positions.

Conclusion

The Euler transformation with the approximating
Kratzer function yields a new representation of the
perturbation series for diatomic molecules. The
transformed series depends on the variables Z{(x) and
Zy(x, y), which are less than unity by definition for all
values of vibrational and rotational quantum numbers.
The series converges if the estimate (24) is valid.
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Fig. 2. Rotational energy levels of the first excited vibrational
state of the HI molecule (in cm™): calculation by the
Dunham equation (curve 1), calculation with the transformed
series (17) (curve 2).

The test calculations for the first excited
vibrational state (v = 1) of the HI molecule showed
that the transformed series (17) gives the rotational
levels with J <10 almost coinciding with those
calculated by Eq. (11). For higher rotational levels
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10 < J < 20, the difference between these two sets of
calculated levels achieves 0.8 cm™!, at 20 < J <30 it
grows up to 16 cm™!, and at 30 < J < 100 it is as high
as 6000 cm~!. Equation (17) predicts lower energies
than the Dunham series does (see Fig. 2).

In practice of using the transformed Dunham
series (17), the coefficients d,(y) (for individual
vibrational state) can be determined through fitting to
measured frequencies of the transitions. Another
parameterization of the vibrational dependence
represented by Eq.(26) is also possible. The new
parameterization consists in description of the vibrational
dependence of the ratio of the Kratzer estimate of
derivatives on the RV energy with respect to the
variable J(J + 1) to the “true” values of derivatives.
This problem is likely simpler than the problem of
reconstruction of the derivatives ¢,(y) from the
coefficients of the divergent series (11).
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