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A semiempirical method of global calculations of the vibrational-rotational line intensities of
acetylene molecule developed within the framework of effective operator approach is presented.

Introduction

A series of our recent papers!~!4 has been devoted
to the problem of global simulation of high-resolution
spectra of linear triatomic molecules of CO5 and N,O.
This simulation was made in the framework of the
method of efficient operators. Two parameters of a
spectral line, its center and integral intensity, were
simulated. In these papers it was shown that the
models, created by the authors, enabled us not only to
reproduce, but also to predict both the centers and the
intensities of spectral lines with an accuracy
approaching that of the present-day experiment. In the
subsequent papers!> 16 the global simulation was
extended to the line centers of tetratomic linear
molecule of acetylene. The present paper is devoted to
the global simulation of line intensities of the
vibrational-rotational transitions of this molecule.

Line intensity. Line strength

The intensity of an absorption line S;._,(T) due to
the vibrational-rotational transition & « « in the units
of cm™!/(molecule cm™2) at the temperature T, K, is
given by the well-known expression

81 exp(=hcE, / kT)
S T)=——2Cg,V 0 a7 x
bea( ) 3he 9aVb —a Q(T)

x [1 —exp(=hevy, _, /kT)] Wi _as W

here c is the speed of light, % is the Plank’s constant, k
is the Boltzmann constant, C is the content of a given
isotope in a sample being studied, g, is the statistical
weight of the lower level, Q(T) is the partition
function, v,_, is the frequency of the transition (wave
number), E, is the energy of lower state, W, _, is the
probability of the transition or the line strength.

In other units of the line intensity, namely,
em~!/atm at T,K, an additional multiplier
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n[273.15/T appears in the formula (1), where 7 is the
Loschmidt number. Thus, the relation between the two
above-mentioned units is given by the expression:

1em™!/molkm2at T, K =

)
=n73.15/T cm™! /atm at T, K.

A cumbersome procedure in the calculations of
line intensities is connected with the calculation of the
probability of the transition Wp_, or, as it is called in
the literature, the line strength. In the sections below
the schematic of semiempirical calculations of these
probabilities will be given in the framework of the
method of effective operators.

Operator of an effective dipole moment

In Ref. 15 we have proposed an effective
vibration-rotation Hamiltonian describing fully the
vibration-rotation energy levels of the acetylene
molecule in its ground electronic state. In our next
paper!6 this effective Hamiltonian, earlier developed up
to higher orders of the perturbation theory, was used
for global processing of calculated results on the
vibration-rotation energy levels of the acetylene
molecule, being lower than 6000 cm~!. As a result, this
processing enabled us to reconstruct parameters of the
effective Hamiltonian and to find the effective wave
functions of vibration-rotation states, lying below
6000 cm™ .

The effective Hamiltonian proposed is based on
the assumption of cluster structure of the vibrational
energy levels, following from the approximate relations
between the harmonic frequencies

W = = 50 = 50, 3
Wy = 30y = 3ws. 4)
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One cluster or polyad, numbered by the integer P,
contains the vibrational states, whose quantum numbers
satisfy the relation

P=5V+3Vy+3Vy+ Vy+ Vs. )

The effective Hamiltonian describes only the
interactions in an explicit form between the vibrational
states of the same polyad. The remaining interactions are
fully allowed for by the effective Hamiltonian parameters.

The effective Hamiltonian H ¢ can be obtained
from the vibrational-rotational Hamiltonian Hy g using
contact transformations

Heff — eiS Hyg e_iS, (6)

and, hence, the corresponding operator of the effective
dipole moment M ©f can be obtained from the operator M
of dipole moment by the same contact transformations

Meff — eiS M e*iS. (7)

Within the framework of the method of effective
operators the strength N'J'e¢' « NJe of a line due to the
transition between the vibration-rotation states numbered
by the set of vibrational quantum numbers N, the
quantum number of the angular moment J, and the
evenness € = +1, are given by the following expression:

2
— ff ff ff —
WNTE;NJS-SZ |(lp;,,].8.|M§ UJ?WE>| =

Vi Ve Va Vi Vs VilVy Ve Ve Vs

als lyi'ls

J ~ViVOVsViVstyls J' AViIVa V3 Vi Vs lyl5
x TCNe T O X

2

X [V VyVaVaVa ey o5 J M K e0MS OV Vo VsV Vs by ts JMKeD | (8)

0,0 - N .
here 7 C},\/}SVZ%V“V”“‘?C” are the mixing coefficients
determining the wave eigenfunction of the effective

Hamiltonian

off T~V Vy Vs Vi Vs 04 15
WNime = Z‘ Cre 075 TS X

ViVyVsViVs
273,
(4 s

x OV Vo V3V, Vs b4 (5 JMKel 9

Here Wang combinations are taken as the basis

functions

DV1V2V3V4V5 f4 fs JMKelO=
1
= ﬁ (DV1V2V3V4V5 €4 ZS MJ/MK = f4 + ES [+

+ 8DV1 V2V3V4V5 _f/‘ —,65 MJM - K = _f/‘ — 65 D, (10)
OV, V4 V3V, Vs 00 JMOg = 10=
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where OV{VyV3V, V544 450 and UMK O are the
eigenfunctions of the energy operator of harmonic
vibrations of CoHy molecule and the eigenfunctions of a
rigid symmetric top, respectively.

As noted above, the effective dipole moment
operator, used in Eq. (8), can be obtained by contact
transformations (7). However, in the present paper, we
will not use contact transformations, but the operator
of effective dipole moment can be constructed
corresponding to the effective Hamiltonian!5:16 from
the symmetry considerations.

= |:|V1 V2V3V4V5 0 ODEUMOD

Transformation characteristics
of the operator cyclic components
of the effective dipole moment

The component M, of the dipole moment in the
space-fixed coordinate system is connected with the
components of dipole moment W, W, WM, in the
molecular-fixed coordinate system by the well-known
relationship

My = Di§ (=8, = 9, =)0 1y + D{Y'(=8, =4, =X) o +
+ D=8, =, =) p_y, (12)

where D,(,fo)(— 0, — ¢, —x) is the Wigner D-functions,
and the cyclic components of the dipole moment Wy, Wy,
M—1 are expressed in terms of Cartesian components by
the following equations:

M= - ﬁ (ux + i“y)’ (13)
Ho = M, (14)
Moy :% (, — i) (15)

After applying the transform (7) to Eq. (12) the
dipole moment components My, Mg, H-1 become the
vibration-rotation =~ operators  and, because  no
commutation between the above components and the
Wigner D-functions exists, Eq. (12) should be rewritten
in the anticommutation form. However, to simplify the
presentation later on we shall use Eq. (12), and, when
we are dealing with the calculation of matrix elements,
we return to its anticommutator form.

We impose most general requirements of
Hermitian character on the operator of effective dipole
moment, namely, the realness as well as the
requirements connected with its behavior relative to the
transformations from a group of molecular symmetry. As
a result, we obtain the transformation characteristics of
cyclic components of the operator of effective dipole
moment in the molecular-fixed coordinate system, which
then will be used to construct the expansion of these
components in terms of elementary vibrational and
rotational operators.
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Hermitian character

The requirement of Hermitian character (M%ff)Jr:

= M%ff results in the relationship

(DI* uf + (DE* 1o + (DU uy =

=Dy uey + DY wo + DSy, (16)

which can be performed under the following conditions:
Hi=—H_q, a7

noy = -y, (18)

Ho = Ho - 19

Here and below + sign is used to denote the operation
of Hermitian conjugation, and the * sign is used to
denote the operation of complex conjugation. When
deriving the conditions (17)—(19) we wused the
following characteristic of the Wigner D-functions:

DO = DOMM DY (20)

Realness

The requirement of realness (M%ff)T = M%ff results

in the relationship
(DI)* Wi + (DG wh + DH* WLy =
1 1 1
= DY oy + DGR wo + DY g (21)

which can be performed only under the following
conditions:

THEE TR (22)
Wl =y, (23)
l,lg =Ho - (24)

The sign “T” is used in this paper to denote the
operation of time inversion, which reduces to the
change in sign of time and to complex conjunction of
the coefficients in front of the operators.

Transforms from the group
of molecular symmetry

The group of symmetry of the acetylene molecule
CyH;y is Dy group having three forming elements,
namely, the turn by an arbitrary angle g around a
molecular axis C({), the reflection in the plane o,
passing through a molecular axis, and the inversion I.
The molecular-fixed coordinate system is chosen in such
a way that the molecule axis coincides with the axis z
of the molecular-fixed coordinate system. According to
the Hougen!7 and Longe-Higgins!® scheme, with these
operations of the point symmetry group the following
operations can be compared from the extended
commutation-inversion group!®
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CW) - Ey, 0, - Ep, T - (12) 34y, (25)

where E is the identical commutation with a subsequent
turn through the angle @ around the axis of a molecule,
Ey is the space inversion, and (12) (34)% is the
commutation with the inversion and with the subsequent
turn around the molecule axis through the angle T
Numeration of atoms is given in Fig. 1.

X
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Fig. 1.

The dipole moment of the molecule is invariant
relative to the commutation of identical kernels and
reverses the sign at space inversion. Thus, the dipole
moment of acetylene molecule is invariant relative to
the operation C(Q) and reverses the sign at the
operations 0, and I.

Operation C(y)) - Ey

The requirement of invariance of effective dipole

moment relative to this operation C(@)MY = MYT
results in the following law of transform for the cyclic
components

C) e = el e, (26)

where T = —1, 0, 1, since the Wigner D-functions under
this operation are transformed as follows:

c) D) = ¢ ™ DY) . (27)

Inversion operation I - (12) (34)7

As discussed above, the space-fixed component of
effective dipole moment reverses the sign under the

inversion operation IM%H=—M§H. The Wigner D-

functions are invariant relative to the inversion
1D = DS (28)

because in this operation the orientation of molecular-
fixed coordinate system is the same, i.e., it does not act
upon the Euler angles

(8, ¢, X) = (8, ¢, ). (29)

Hence, the components of effective dipole moment in
the molecular-fixed coordinate system reverse sign
under the inversion operation.
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Tpe = — e (30)

From Egs. (28) and (29) it follows that the rotational
wave functions and the rotational operators are
invariant relative to the inversion, i.e., are transformed
by irreducible representations [gOof symmetry group of
molecule  Dj,. Thus, the inversion operation
characteristic of the symmetry group of CoH;, molecule
only yields the vibrational selection rules g « u.

Operation 0,, — Ej

The space-fixed component of effective dipole
moment reverses sign under this operation

Ef Myt = - Mt (31)

The orientation of molecular-fixed coordinate
system under this operation varies as follows:

Ep(8, ¢, x) = (t—6, ¢ + 1, 11— X), (32)
and, hence, the Wigner D-function is transformed as
Eg D%)(G, o, x) = Dgé)(n— B, p+m M%) =
= - (- D" D8, 9, 0. (33)
Taking into account Eqs. (31) and (33) we have
Eg My" = E¢DS§ wy + DY po + DUy} =
=~ (- DSCEG w) + DY (E Ho) ~
- DYO(ES wp} = - MY, (34)

from that follows the law of transform of cyclic
components of the effective dipole moment in the
molecular-fixed coordinate system:

EQ My == My, (35)
EG oy =—Hy, (36)
EG Ho = Hp - 37

Expansion of the effective dipole
moment operator
A traditional method of contact transformations20
results in a power series over elementary rotational and
vibrational operators for molecular-fixed components of

the effective dipole moment operator. Thus for a cyclic
component Yy we have

= Z Mr(]mn)(pq)(rs)(lkgh)(efab)dct (a;-m ) (a;p ag) «
x (a3 a$) (PAD! FADF (A7 (FAD" x

x CADE CAD CAD* CADP J2 G, (38)
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where summation is performed over all indices of the
parameter ]\4r(]mn)(pq)(rs)(lkgh)(e/‘”ab)dcz‘,7 and Gf{’ is of the

form

G =75, + o)t (39)
forn=+1,
Go=JL (40)
forn =0 and
G =@J,+ o)t e (41)

forn=-1.In Eqgs. (38)—(41) the following designations
are used for elementary vibrational and rotational
operators: a; and a@; are the operators of creation and
annihilation of a vibrational quantum of nondegenerate
vibration (i = 1, 2, 3) at the frequency wy; the ladder

operators for degenerate vibrations (5 =4,5) are
determined by the following expressions:
igr = a}a + ia}b, (42)
]A; = ajq + id]'b, (43)

and the ladder operators of the angular momentum
components are introduced as

Je=J.Fil, (44)

where Jy, J,, J, are the Cartesian components of
angular momentum in the molecular-fixed coordinate
system. Matrix elements of the elementary vibrational
and rotational operators are given in the Appendix, and
their transformation characteristics are given in
Table 1. Using these characteristics based on Eq. (26)
we can obtain the following condition for powers of
vibrational and rotational operators:

[G+g)—(R+ D]+ [(e+a)-
-(f+b)]-nc=1. (45)

If, taking into account the matrix elements of
elementary vibrational and rotational operators, as well
as the condition

Ay + Als = AK, (46)
that follows from the Hougen condition
l+ 05 =K, 47

which is used when constructing the isomorphic
vibration-rotation Hamiltonian of a linear molecule,?!
Eq. (26) can be written in the following form:

“nec=1- (Al + As). (48)

An expression for a cyclic component is derived
from Eq. (38) using the relation (17)

Hoy=-— Z (M'(]mn)(pq)(rs)(lkgh)(efab)dct)D (aTn ariz) %
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x (@31 ab) (a5’ ah) CCAD" (AaDH CaDk (A x

x CADY CAD® CAD CAD 7 G (49)
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Applying time inversion operation to the cyclic
component Wy with the account of Eq. (22) results in
one more expression for the cyclic component p_q

Table 1. Transformation characteristics of elementary operators

Operator Hermitian Time Turn Inversion / Reflection
j=4,5; conjugation inversion e[() in a plane oy,
T= g, e
P x T P x i E iiox P x
]AT ]A*T /A*T e n'l]J]A_[ (71)]]AT ]A—T
+ T + + + +
A+ At A<+ A<+ A<+ At
g g g g g g
+ T + + + +
oz, a5, oz, oz, oz, %z,
./r ]—r 7]—1 C_mp]T ]T 7'/_T
J: J: -J: J: J: —-J:

Hoy = (- 1)c+t+1 Z (Mr(]mn)(p(])(rs)(lkglz)(ef(lb)dct )D %

x (a™ d}) (aiP af) (a5 a5) CADF AN aD" (P40 x

x CADS CAD? CAD CaAD* 7 G (50

Comparing Egs. (49) and (50), we find the
following relation between the parameters M:

(Mr(]mn) (p@) (rs)(Ikgh) (efab)dct ) O_
=(-1 )C+t (M'(]nm)(qp)(sr)(ghlk)(abef)dct )D. (51)

Finally, the cyclic component of the dipole
moment in the molecular-fixed coordinate system W _;
can be obtained from the cyclic component Py using the

operation Ep, Eq. (35)

W= (- 1)c+t+1 z Mr(]mn)(p(])(rs)(lkglz)(ef(lb)dct %
x (a™ d}) (a3P af) (a3 a5) CADF AN A" P40y x
x CAD CAD CAD CaD* J* G (52)

Comparing Egs. (49) and (52), we derive one
more relationship between the parameters M:

(Mr(]mn)(pq)(rs)(lkglz)(efab)dct )D=
_ (_1)c+t Mr(]nm)(qp)(sr)(ghlk)(zlbef)dct ' (53)
From the relationships (51) and (53) follows the

realness of the parameters M. Finally, we have the
following relation between these parameters:

Mr(]mn)(pq) (rs)(lkgh)(efab)dct _

- (- 1)c+t Mr(]nm)((]p)(sr)(glzlk)(abef)dct . (54)

Taking into account the requirement of Hermitian
property (19) of the cyclic component o of the
effective dipole moment operator in the molecular-fixed
coordinate system the expansion of this component can
be presented as follows:

Ho = Z [(0)Mr(]mn)(p(l)(rs)(lkgh)(efab)dct (a;rm ab (a;l) ag) x

x (a3 a$) (*AD! FADF (a7 (AD" x
x CAD® CAY CADT CADb 2 Gt +
4 (O MGmPOC Urgh)efuet O o1 gy
x (ay" ab) (a5’ af) ('AD" (PaD)? Ak (faD!
x CADE CaH® CAD CAD T Gl (55)
To fulfill the condition (26), it is necessary that

[+g) —(k+ ]+ [(e+a)=(f+D)]=c, (56)

or, what is the same,
Ay + M5 =AK = c. 7

When performing the consideration, which is
analogous to the preceding one, and using the conditions
(24) and (37), we can show the realness of the parameters
(01 and the fulfillment of the following condition:

) Mr(]mn)(pq)(rs)(lkgh) (efab)dct _

= (- 1)c+t (0)Mr(]nm)(qp)(sr)(ghlk)(abef)dct ) (58)

which coincides by its form with the condition (54).
We shall use the relations (54) and (58) in what
follows in calculating matrix elements of the effective
dipole moment operator.

Line strength. Design equations

Using the expansions (38) and (55) for the cyclic
components of effective dipole moment in the molecular-
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fixed coordinate system, as well as the relations (54)
and (58) between the coefficients of these expansions,
the matrix elements, in Eq. (8), were calculated. In the
calculation we used the matrix elements of elementary
vibrational and rotational operators given in the
Appendix as well as the relationship

J'K'M'ODSY JKMO=

2] +
2] + 1

(1t JKOJ'K') (10 JMO)'M'),  (59)

Wi e o nge = QT +1 ; Z Tcy
vV vy sav,+3av, +58T Ay, +av; =ap
‘

/'43

xj'c;\/;‘+'AV1 Vy+ AV, Vy+AVy V, +AV, Vs +AVs £, +00, 5+D05 B Al DS
€
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where (J{my Jo myCJm) is inserted for the Clebsch—
Gordan coefficients. After summing over magnetic
quantum numbers M and M' in Eq. (8), when we used
the relationship

_ 2] +1

N;(m M M) =

an expression was derived in the first orders by the
perturbation theory for the line strength of the
vibration-rotation transition N'J'e « NJe:

(60)

V1VZV V, Vs £, (s

o0, O
\/AV4 (v, 44,53)(1”5& 00,0 ¥O,+a0,,0 Or, +ars,

% ZKAVV + Z alfV (20,00 +1)+ F, AK(],K)%

The functions ®pjar(J, K) in Eq. (61) for AK =
=0, +1 coincide with the Clebsch—Gordan coefficients

®pax(J, K) = 1AK JKOJ + AJ K + AK),  (62)

and for AK =+ 2 the functions are given by the
following expressions:

Dn(J, K) =1 £ 1JKOJ + 1K £ 1) x

x\(JFK({J £K +3), (63)

®pn(J, K) = (1 £ 1JKOJ K £1) x

x\UFK-1U K +2), (64)

®O_1n(J, K) =1 £1JKOJ — 1K £ 1) x

xA\JJFK -2 £K+1). (65)

The functions Fajag(J, K) involved in the factor of
Hermann-Wallis type, for AK =0, #1 are given below
and they coincide with those we have used for triatomic
linear molecules, excluding specific case of tetratomic
linear molecules AK =0, Aly £ 0, Al5#0. If AK =% 1,
these functions are the following:

Q-branch:

X

A =0, 21,22,
A05=0,£1,£2,...

My =% ®pp ax (J, KD % (61)

H

=28, 094,00, +a0,,0 Or, +ar, ,o) x
2
FRVA (T, K) = —1b,AV (2KDK +1) +

(66)
Avd(] +1)

AKBK +£%

P- and R-branches:
Fifac Ky == (abl ~dpV) -

1
—E(bf‘/ +d%) QKAK +1)=dfE K>+ (67)

+ 08V m 4 d® m? + (a8 - abV ) m ok + L0
0O 20
Here m =-J, 0, J +1 for P, Q and R-branches,
respectively.
For AK =0, Al; =0, Al5=0, as in the case of
triatomic linear molecules we have

F ak=0U,K) = b3 m +d}V |_J(J +1)+m - K2]. (68)

It should be noted that in this case at ¢4 = (5=0 Q-
branch is lacking.

For a specific case AK =0, Al;#0, Al5#0 it
is necessary to consider two possibilities: a) K =0,
b) K # 0.

a) K=0.

In this case the function FAA,VAKzo(],K) is given
by Eq. (68) for P- and R-branches. However, Q-branch
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occurs only in the first order by the perturbation theory
and therefore the expression for a corresponding matrix
element (the expression in braces of Eq. (61)) is
replaced by the expression

OMB s [FA B (v, ) JIT+D . (69)

Note that this case was discussed by Watson?2
using as an example the bands (v, +vs) =, — (O)Z;r
and (v4 +vs) Z, = (0)Z, of CoH;, molecule.

b) K # 0.

In this case the function FAA]VAK(J,K) is given

again by Eq. (68) for P- and R-branches, and for Q-
branch we have

NG YYYA

Filak (U, K) = ;{Q +d% gj(] + 1)—K2]. (70)

AVdJAfj A% has the same

Note that the parameter

order of smallness as the parameter bJAV. Hence, in the
special case considered strong dependence of the
function FAA,VM(] ,K) on the quantum number of
angular moment J is observed.

The functions ff{f A5 (V,0,4,25) under the radical

sign in the relation (61) can be obtained as the
products of elementary functions given in Appendix.
The combination of products of the Kronecker symbols
appears under the square root in expression (61)
because of the Wang basis used. The parameters of
matrix elements of the operator of effective dipole
moment

Dy Dy _ =Bl =Dl O oD Dls _ O =Dl ALy
Myy =7 = Myy T TMyy T =My, 7

k& (i =1234,5), a®V(i=45), b3, 4%V,

AV AV DAL D5 AV A4 =Dl
de and del > = de 0

OagD, D5 _ x oD Als AV A, Aé-)
(MAV TEMpy T g T,

involved in the expression (61) and expressions for the
functions FAAIVAK (J, K), describe simultaneously the line

intensities of cold and hot bands belonging to a given
series of transitions determined by the value of AP. In
the semiempirical approach used these parameters are
fitted to the experimental values of line intensities, and
then serve for predicting line intensities with large
values of quantum number of the angular moment J as
well as lines of hot bands belonging to the series being
considered.
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Classification of
vibration-rotation states.
Selection rules

To collect all data, necessary for calculating the
line intensities of acetylene molecule, we give in this
section reference data on the symmetry classification of
vibration-rotation states of this molecule as well as the
selection rules determining the processes of dipole
absorption and emission.

Owing to the condition K = ¢4 + (5 the vibration-
rotation states of acetylene molecule can have only the
2 symmetry type.

The evenness of vibration-rotation state is
determined by the value € (—=1)’. When denoting the
type of symmetry of vibration-rotation state, the

«

evenness is denoted by the upper indices “+” or “—“:

+

e(-1) :% 1*2_. a1
F1-3

The behavior of vibration-rotation state relative to
the inversion operation from the point group of molecule
Dy, is determined by the value (~1)"3*V3. Symmetric

states are denoted by the subscript “g”, and
antisymmetric states are denoted by the subscript “u”.

o1-%2
ot =g T2 (72)

The nuclear statistical weights are given in Table 3.
The selection rules for spectra of dipole absorption of
molecule CyH, are given in Table 2.

Table 2. Selection rules for spectra
of dipole absorption of CyHy molecule

Vibration
AV is odd number (Als = +1, #3, ...), AV3is even number
AV is even number (Afl5 = 0, £2, 4, ...), AV3 is odd number

Vibration-rotation

Group D,

Group SO(3)
AJ € o €
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A =0 1o -1
1 o1
A =+1 Q’1<—>*

Table 3. Nuclear statistical weights
of acetylene molecule

Type of symmetry g
Ty Zu
%y 2, 3
Conclusion

In this paper we described the approach and
general pattern of global calculations of line intensities
of vibration-rotation transitions in the spectra of dipole
absorption of acetylene molecule. The approach
developed is based on the method of effective operators.
In our next paper this approach will be used for
simultaneously describing line intensities of cold and
hot bands in the range of 13.6; 7.8, and 5 pm.
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APPENDIX

Matrix elements of elementary
vibrational and rotational operators in
the case of tetratomic linear molecules

Nondegenerate vibrations
= H/l +1 R
)=Vi .

where i = 1, 2, 3 numbers nondegenerate vibrations.
Degenerate vibrations

>:¢,/Vti€t+2,

<Vt _1 Zt i1|Ai_|Vt [l’> =+ Vt $Zt

(V; +1|ai |V;)

Vi1l Vi

(Vi 10, £1]AL|V, ¢

where ¢ = 4, 5 numbers the degenerate vibrations.
Components of the angular momentum

(J Kx1|J.|J K)=JUFK)U £K +1).

Vibration phases and wave functions are selected
according to our calculations.23

N4 ACs

Functions | AV, AV) AV AV, AV V1,

Vo, V3, Vi, Vs, l sy ls).
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These functions consist of the product of
elementary functions for each mode which are
determined by the following matrix elements:

fav, (Vi) = (V; +aV; [(aDAi|V;) =

- J(Vi +1)(V; +2).(v; +AV;),

AV

i

[lav, (Vi) = (Vi =&V a2 Vi) =
= [v;(v; =1).(v; -aV; +1),
AV,

i

where i =1, 2, 3.

+M (Vr,ft) (- 1)’(AV+A“

<Vt+AVt[ +A/, |(A+)2(AV, Al )(A )2(A‘4+A( |Vt €t>:

:‘/(Vt"'ft"'z{(m/f N} V, -1, +2{(AK+A/}

1 —
BV ) = )T
1 1 —
x <Vt_AV{:€ti Agt |(A+—_)§(AV,iAfr)(A__)E(AVt-%-Aér)lVt£t> -

= \/(Vf + gf){‘%(AVriMrj(Vt _ fr){—%(AVriAéIj

)

1
fA oV )= 1)%Mz Vit +or, |(A:A;)5Mr|vtft> =

= \/Wt e AR e}

1
\[fm_/,A:/(t) \ADE (‘1)%% (Vit, =y |(A:rA-_)§Mt| Vity) =

= \/(Vt -+ 2){%M'} v, + gt){_%M'},

where t =4, 5. In the above expressions we used the
following designations:

o = x(r +2) . Jx +2(n - 1)], n >0,

n

o = x(r =2). Jx - 2(n - 1)], n>0.

n
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