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Account for the detector’s “dead time”
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Numerical experiment is described to study the effect of “dead time” of a counting system on the
statistics of readouts of laser radiation passed through the turbulent atmosphere at sampling time varying
in a wide range. The numerical results agree well with the experimental data.

To record optical signals in the photon counting
mode, a receiver usually consists of a photomultiplier
tube, discriminator, and a shaper of standard pulses.
Each of the above units has a finite response time,
therefore some single-electron pulses are not recorded,
and characteristics of the photoelectron flux (primary
flux) and the flux of readouts (secondary flux) differ.
Many authors have earlier considered the transformations
of statistical characteristics of the primary flux by
counters due to various types of the “dead time” (DT).
It proves to be a rather complicated problem to take
into account the effect of DT on the probability
distribution of readouts, and this problem can be solved
only approximately and only in some asymptotic cases.

The detailed analysis of the effect of DT on the
statistics of readouts of laser radiation passed through
the turbulent atmosphere and having Gaussian
distribution of the field is given in Refs. 1-3.

In our earlier paper,4 we have presented some
results on the effect of DT on the statistics of readouts

at T <<t1, where T is the sampling time and T is the
correlation time of the intensity fluctuations in the
atmosphere, assuming also the lognormal intensity
distribution. According to Ref.4, the probability
distribution of photocurrent P, with the allowance made
for the DT effects and the turbulent atmosphere can be
obtained from the distribution of photo readouts P for
the amplitude-stabilized radiation that accounts for
DT through averaging over an ensemble of intensity
fluctuations 7

Py(n, N, €) = [Py(n, N, £)3, D)

where 7 is the number of readouts in a sample; N is the
mean number of readouts; € = At /T, At is the counter’s
dead time.

Using the lognormal distribution of the radiation
intensity,® after averaging we have the following
equation:
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and 02 = 200~ I3 are fluctuations of the logarithm of
relative intensity y =1In(I/Iy); I and I, are the
intensity of the radiation propagated through the
atmosphere and the intensity of incident radiation.
Scattering is ignored.

At the sampling time T <<Tt, Eq. (2) describes the
experimental results from Ref. 4 sufficiently accurate.
But, at the sampling time, comparable with the
correlation time of intensity fluctuations of laser
radiation in the atmosphere, the distributions of photo
readouts and the effect of DT on the distributions of
photo readouts are poorly studied. In Ref. 6, we presented
the results of experimental studies of the probability
distribution of readouts at the sampling time comparable
with the correlation time of intensity fluctuations.
These studies were performed under laboratory
conditions, and this enabled providing for stationarity
and control of the main parameters of a path to a
degree inaccessible in field atmospheric experiments.

The studies were conducted with various states of
the induced turbulence, which corresponded to weak
and moderate turbulence in actual atmosphere. As the
experiments showed, the probability distribution of
readouts of a non-Gaussian field at T =Tt differs
strongly from the known approximate distributions. As
the distributions known are badly suit the description
of experimental probability distributions at T =1, it
was needed to find new distributions describing the
experimental data. The first step was to find the
dependence of the relative variance of photo readouts
[331 on the sampling time from the experimental results.
It is known that in the case of lognormal intensity
distribution at T <<t, this parameter is connected with
the variance of the logarithm of relative intensity o2 by
the equation?:

62 =1In (1 +B2). (3)

As is shown below, Eq. (3) keeps true at T =T,
however in this case 62 has the meaning of the variance
of logarithm of the relative integral intensity GE/ and B,

depends on the exposure time T. At T - 0 05 - o
Then, to describe experimental probability
distributions at T = 1, we can use Mandel equation8:
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where U = J. I(t)dt is the energy measured with the

0
detector during the sampling time; w is the energy
probability density; n is the quantum efficiency of the
detector.

To solve Eq. (4), we should specify the intensity
distribution. It is known that at T <<t the intensity
distribution is unambiguously determined by the
distribution of photo readouts through inversion of
Eq. (4), and at the sampling time T = T the distribution
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of photo readouts must determine the distribution of
the integral intensity. Then, according to Eq. (4), the
probability that during time T no readouts happen (at a
given mean number of photo readouts N) is equal to

P, N) = J exp(~Nx) oxx)dx, (5)

where «Xx) is the probability distribution of the
normalized energy measured by the receiver,
x=U,/U0 Thus, P(0, N) can be considered as
Laplace transform of the function w(x), and if the
dependence P(0, N) is known (for example, from
experiment), then the corresponding w(x) can be found
by applying the inverse Laplace transform to the
function P(0, N):

b—io
w(x) =ﬁ I P(0, N) exp(Nx)dN. 6)

b+ico

Expanding oXx) into a series over Laguerre
functions, after some transformations according to
Ref. 8, we obtain a solution of the inverse problem in
the form

w(x) = Yy a,(x)P(n, N), 7

where

a,(x) = 2N(—2)"Z H'H N =

m=0
= ZN(_2)2 Z H;kBln+k(2Nx)
k=0

and [,(y) are the Laguerre functions.

Dots in Fig. 1 denote the distributions oXx)
obtained by solving the inverse problem. The results are
presented for one state of turbulence at different
sampling time. The curves correspond to the lognormal
distribution, for which the parameter o2 is assumed
dependent on the sampling time 7. In this case, the
parameter of the lognormal distribution was the
variance of the integral intensity 0(2] instead of the
intensity variance o2 used earlier. The variance of the
integral intensity can be found from the experimental
results, as well as by the use of Eq. (3). As is seen
from Fig. 1, the lognormal distribution with the
parameter 0[2] describes the distribution of the integral
intensity accurate enough. The lognormal character of
the distribution of the integral intensity is the basis for
applying Eq. (3) at T =1, because it was derived just
for the lognormal distribution.

Some results of numerous experiments are shown
in Fig. 1, these results suggest that the general
character of the distribution of integral intensity is
independent on the sampling time. Only the distribution
parameter 0(2] depends on the sampling time.
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Fig. 1. Distribution of integral intensity. 1. = 0.68 ms. Dots are
found from the distribution of photo readouts by solving the
inverse problem, the curves are for the lognormal distribution:

64=0.18 and T=0.125 ms (1), 6f = 0.09 and T = 0.5 ms (2),
ofv =0.05and T =4 ms (3).

One more conclusion that can be drawn from the
above results, is the possibility of using the Diament—
Teich  distribution to describe the probability
distribution of readouts in a wide range of sampling
time, including T = 1. To do this, it is sufficient to
replace the variance of instantaneous intensity by the
variance of integral intensity in the above distribution.

However, this conclusion does not allow Eq. (2)
to be used to account for the DT effect on the
probability distribution of readouts at T =T, because
this equation was derived in the approximations based
on the assumption that the sampling time is small as
compared to the correlation time of intensity
fluctuations. In this connection, we have developed an
algorithm for numerical simulation of the experiment
described above. Using the Monte Carlo method,® we
have made a generator of the flux of readouts with a
preset distribution. Below we give a detailed
description of this algorithm.

It is known that the probability density of the
length of an empty interval in the photoelectron flux is
determined as8:

f(T) =0P(0, T) /(dT).

On the other hand, the probability distribution of
photo readouts for a continuous-wave source of
radiation is described by the Poison statistics; as a
result, the probability of the empty readout is

P(0, T) = exp(=Iyt),

and, consequently, the distribution density of the
length of the empty interval is

fo(T) = Iy exp(=Iyt).

To determine the length of the empty interval
between two readouts in a sequence of random
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photoelectrons obeying the Poison statistics, it is
necessary to solve the integral equation
t

X = j fo(T)T, (8)
0

where x( is the random value uniformly distributed
over the interval [0, 1].
Then

xg = exp(=Iyt)
and, consequently,
t= _lnxo/lo. (9)

Then, drawing a random number x(, from Eq. (9)
we determine ¢ — the time of entry of the first readout
during a sample of length T. If ¢; > T, then the sample
is empty and the number of readouts in the zero
channel of a histogram increases by one. If ¢; < T, then
the counter contents increases by unity and a new
random number xy is drawn, ¢, is determined, and the
condition #y + t; > T is checked. If the condition is
fulfilled, then unity is added in the first channel of a
histogram. Otherwise, the counter contents increase by
unity, the next random number is drawn, and ¢35 is
determined. This process continues until the condition

t1 + tz +'~-+tn+1 >T (10)

is fulfilled.

As a result, we get the sample with n readouts
and, consequently, increase the contents of the nth
channel of the histogram by unity. To determine the
number of readouts in the succeeding samples, the
process is repeated. Repeating the process N, times,
we obtain the histogram of distribution of the photo
readouts. Then the obtained histogram is used for
calculation of the probability of readouts, its mean
value, and other parameters of the distribution.

To take into account the counter’s DT in this
algorithm, it is sufficient to introduce a gap time At
after every readout with regard for the character and
duration of the counter’s DT. For the dead time of
inextensible type, the algorithm is implemented
especially easily. Thus, for example, if ¢; < At, then
under condition (10) the ith readout is missed (unity is
not added to the counter contents), summation of ¢
continues with the allowance for ¢;, and the resulting
histogram is thus distorted by the dead time.

In the case of fluctuating intensity I # I = const,
the modeling process becomes somewhat more
complicated, because in this case it is needed to model
random [ with the given distribution and correlation of
intensity fluctuations. In the absence of correlation, we
can restrict ourselves to solution of the equation

I
0

where oX7) is intensity distribution. In the case of
lognormal intensity distribution, we have
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InJ
X9 = J ’\/ﬁ exp[—(InI' — OnI'D2,/202] dInl'. (11)
0

To take into account the effect of time correlation,
the correlation function should be specified, in addition
to the probability density.

The simplest solution of this problem consists in
reduction of a non-Gaussian process to a Gaussian one
through inertialess nonlinear transformation.!® In the
case of lognormal distribution, this transformation has
the form

I; = Iy exp(ox; — 62,/2), 12)

where x; is a normally distributed random parameter
with the variance equal to unity and the correlation
function p(¢). In this paper, to describe the
experimental  correlation  function of  intensity
fluctuations, we use the following empirical equation:

r(t) =1,/ + at), (13)

where the parameter a was fitted to the experimental
data.

The corresponding equation for p(¢) (see Ref. 10,
p. 184) has the form

p(t) = In[r(t)(exp(a? — 1) + 1)] /a2, (14)

and the values of x; can be obtained using the recursion
equation (see Ref. 10, p. 188)

X; = p(tl- - ti71)xi71 + '\/1 - pZ(ti - ti*1)2iv (15)

where z; is the independent normally distributed
random parameter; x; = z¢, and t; — t;—4 is the time
interval, during which the intensity is thought constant
(the sampling time T was divided into n intervals each
AT =t; — t;—1 long and it was assumed AT = const < T
for simplification).

To generate a flux with the preset distribution and
correlation  function, an independent normally
distributed random parameter z; is drawn and converted,
using Eq. (15), into the normally distributed random
parameter x; with the preset correlation function (14).
Substituting x; in Eq. (12), we obtain the lognormally
distributed intensity with the correlation function (13).
Then, using Eq. (9) and the substitution Iy - I;
according to the algorithm described above, the empty
interval ¢ is drawn and so on.

Using the described algorithm, we have conducted
numerical experiments aimed at evaluation how the DT
affects the statistics of photo readouts and, in
particular, the central moments up to the fourth one,
inclusive. Figure 2 shows the results of the experiments
for one state of turbulence (0(2] =0.678) at different
values of the ratio At/T. Here m; is the normalized
moment of the ith order, and m;, is the normalized
moment of the ith order of distribution not distorted by
the DT effect. It is seen from the figure that the DT
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effect on the distribution moments up to At/T < 107>
is negligibly small. Starting from At/T = 1075, the DT
effect increases gradually, and at At/T =107% the
distortion of the fourth moment is 4-8%. Lower
moments, as could be expected, experience smaller
distortions, although at At/T = 1073 distortion of the
first moment, i.e., the mean value, reaches 5—7%. At
further increase of the ratio At/T, the effect of the
dead time rapidly increases and experimental results
become strongly distorted.

logAt/T -8 -7 -6 -5 -4 -3 -2 -1 0

Fig. 2. Dependence of the normalized central moments on
the ratio At/T: the mean (7), variance (2), asymmetry
coefficient (3), and excess coefficient (4).

Thus, our studies showed that the proposed
approach allows one to assess the effect of the dead
time on the statistics of photo readouts and introduce
the corresponding corrections for DT.

The results obtained could be useful in
interpretation of experimental results obtained under
field conditions in the atmosphere with photodetectors
operating in the photon counting mode.
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