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The properties of the probability density function of an effect are considered based on the known
probability density function of a dose in the actual turbulent atmosphere.

A wide variety of relationships for estimating the
influence of environmental factors on living objects can
be found in the literature.!~13 The quantitative measure
of the influence of any factor expressed in any units is
called a dose, and the reaction of organisms to this
factor is called an effect. At aerogenic contamination of
warm-blooded organisms with aerosol and gaseous
impurities of the atmosphere, the dose D can be defined
as the amount of a toxicant inhaled in lungs, and the
effect E is understood as a fraction (percentage) of a
homogeneous population of organisms affected under
the exposure to a fixed dose. The dependence E = E(D)
can be estimated theoretically and obtained
experimentally in some cases.

This problem, especially as applied to human beings,
is of particular complexity because no direct experiments
can be conducted in this case. In such a situation, we
can use the methods for estimating the effect—dose
curve that are based on extrapolation of experimental
data obtained for primates and other laboratory animals.
Such a procedure is justified, for example, in Ref. 14.
The dose considered above is a deterministic (rather than
random) parameter. In the actual atmosphere, which
always is turbulent, the dose becomes a random
characteristic. Therefore, the effect also becomes a
random parameter, and when solving particular
practical problems, one needs to consider the
probability that the effect exceeds some threshold value
P = P(E =z Ey), where Ej is the threshold value of the
effect. In this paper, we consider the properties of the
probability density function of the effect g = g(E)
based on the known probability density function of the
dose in the actual turbulent atmosphere f = f(D) using,
as an example, a specific dependence E = E(D).

The dose received by an organism for the period
from ¢ to ¢t + T equals to

t+T
= J 0 C(x) du, 1)
t

where Q is the instantaneous value of the volume rate
of air flow into lungs; C is the instantaneous value of
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the pollutant concentration. Then we assume that the
conditions of pollutant diffusion are stationary and
Q = const is some effective rate of a pollutant inhaling
into lungs. Then Eq. (1) takes the form
t+T
D=0 J C(x) da. (2)

t

Thus, accurate to a constant factor, the dose is the
time-integrated concentration of the diffusing pollutant.
It is a local characteristic determined for every point of
space. Earlier we have derived theoretically the
probability density function of the integral pollutant
concentration and confirmed it in experiments in a
wind tunnel.!> If the dose is measured in units of its
mathematical expectation D, then its probability density
function has the following form:

f(D) =1[1-erf(P)] D) + \7— {exp [- B (D - 1)*] -

—exp [~ B2 (D + D2}, (3)

where erf(...) denotes the probability integral; B is the
parameter; &(...) is the delta function.

In Eq. (3), the first term describes the probability
of observation of zero doses. It is directly connected with
the effect of concentration intermittence, i.e., the
probability to observe zero concentration.!> The
parameter 3 can be determined from the values of the
mathematical expectation of the dose D and its
variance 02 (see Ref. 15):

2

52 = erf(B) %

In the case considered here, the mathematical

ZD 1+\/—BexP( ). (4)

expectation of the dose is equal to D = QTC, where C
is the mathematical expectation of the concentration.
The variance of the dose is determined by the
equation 16;

t+T

o’ j (T - t) r(ty) dty, (5)

t
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where Gg is the variance of the pollutant concentration;
r(t) is the normalized autocorrelation function of
concentration pulsations. In Ref. 17 we have
determined the form of the correlation function 7(¢).
Therefore, Eq. (5) takes the form

o’ =20° ¢? 2%—1+expﬁ%% (6)

where T is the FEulerian time scale of concentration
pulsations; it estimates the characteristic length of the
correlation function in time. Let us introduce the
intensity of concentration pulsations as I = o./C, then
from Egs. (4) and (6) it follows that

21° ZQ [Z-1+exp (- Z)]—erf(B)%+—D—

1 N
+\FTBeXP( B =0, @)

where { = T /1. The data tabulated in Table 1 give an
idea on the dependence of I on P.

Table 1. Dependence of the intensity of concentration
pulsations on

7 10.06]0.13[0.25]0.5] | 2 ] 4] 8116

B |11.31 5.66 2.83 1.41 0.64 0.23 0.07 0.02 0.004

If £ - 0, then ¢ — I? and corresponding B can be
found by solving Eq. (7). If { - o, then ¢ - 0 as
¢ =21?/7, and B - o as Bz\/Z/(ZI). The asymptotic
properties of the resulting probability density function of
the dose are given in the first three columns of Table 2.

Table 2. Asymptotic properties of the probability density
function of the dose and the distribution function of the

effect
L-0[I-0|fD=8D-1)| GE) = Dy <1
i, D(E) 21
- 0|7 = | AD)=05D) G(E) =1
Lo 120 | (D)=8D-1) | G(E) = OBy <1
i, D(E) 21

Note that the data given in the first row of
Table 2 for I - 0 do not formally refer to the problem
under consideration, because we consider
transformation of the effect—dose curve in the turbulent
atmosphere, where I # 0.

Then we obtain the distribution function of the
effect. For definiteness, take the well known form of
the effect—dose dependence!8:

2 DB (8)
0

E=1—eXpH>OD_§

The value D = D5 in Eq. (8) corresponds to 50%
effect. Assume also that Dsq= D, then for the
dimensionless parameters introduced above we have
E=1-exp (- 0.69D).
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The instantaneous values of the dose and effect are
connected by an equation like Eq. (8), therefore
g(E)dE = (D) dD (Ref. 16). From this we have the
equation for the distribution function of the effect in
the turbulent atmosphere

D(E)
G(E) = J f(x) da. 9
0

The last column of Table 2 gives the asymptotic
values of G(E) obtained according to Eq. (9) and
corresponding to the asymptotic probability density
functions given in the third column of Table 2. In the
general case, to determine the distribution law for the
effect, one has to specify the period of dose accumulation
T, the effective volume rate of inhaling of a biological
object Q, and the mathematical expectation of the
pollutant concentration C. Additionally, one has to
know the Eulerian time scale of concentration pulsations
T and variance 0'3. For the effect—dose dependence
considered here, we also should know the parameter Ds.
The listed parameters are necessary and sufficient for
calculation of the probability that the effect exceeds a
preset threshold value P = P(E =Ey). In this case
P(E =2 Ey) =1 - G(Ep). The value of G(E) should be
calculated by Eq. (9) with the use of function f(D)
described by Eq. (3) and the dependence D = D(E),
which is an inverse function to the curve of the type (8).

Figure 1 shows the curves calculated for three
different values of the intensity of concentration
pulsations. Figure 1 corresponds to the concentration
intermittence equal to 0.11, 0.84, and 1.

For this figure, it is still assumed that
transformation of the dose into the effect follows Eq. (8),
Dsy=D, and the dose is measured in the units of
D = QTC. We can see that at a low intensity of the
concentration pulsations (Fig. 1¢) the dependence
P =P(E = Ey for different { is close to a stepwise,
corresponding to the asymptotic properties of G(E)
presented in Table 2. Due to the increase in the intensity
of concentration pulsations (Fig. 1b), the curves begin
to differ. Note that at FEy<0.5 the values of
P = P(E = Ey) for { =1 are smaller than the values of
P = P(E 2 Ey) for { =10 and 100. This means that the
dose accumulated at a low pollutant concentration for
long time corresponds to higher probability of the
effect than the same dose accumulated for a shorter
time at high pollutant concentration does. This
difference can reach tens percent. Just the opposite
pattern is observed at Ey> 0.5. And, finally, in
another limiting case (Fig. 1¢), when the intensity of
concentration pulsations is very high, almost always the
values of P=P(E =E;) at { =1 are less than the
values of the probability that the dose exceeds a preset
threshold for ¢ =10 and 100. However, here we should
speak about a tenfold and larger difference in the values
of P=P(E = E;) for different {. In this case, the
curves also correspond to the asymptotic dependences
G(E) given in Table 2.
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Fig. 1. Calculated probability that the effect exceeds a preset
threshold value for different intensity of concentration
pulsations. Curves 7, 2, and 3 correspond to dimensionless
periods of dose accumulation = 1, 10, and 100.
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The results obtained demonstrate that pulsations
of concentration of an atmospheric pollutant have a
pronounced effect on the effect—dose dependence. Even
insignificant variation of the pollutant concentration
and the time of dose accumulation may lead to
significant changes in the effect probability. All these
effects should be taken into account when solving
various applied and medical-biological problems.
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