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The methods and algorithms for estimating and forecasting the atmospheric parameters with the

Kalman filtering method are considered.

Introduction

In recent years, the procedure of data assimilation
preceding numerical weather prediction, is widely used
in practical processing of meteorological observations.
This procedure is based on simultaneous consideration
of both measurements themselves and the results
predicted with a chosen mathematical model. The
problem of data assimilation is usually solved with a
dynamic-stochastic approach based on Kalman filtering
theory. 177

This approach assumes that the state of the
atmosphere can be described by random fields, which
are interconnected by some system of relations.
Therefore, the process of forecasting in this approach
consists of two stages:

— assimilation of the atmospheric state measurements
and correction of parameters of a prediction model;

— prediction itself based on the corrected model.

It should be noted that application of the Kalman
filter in the procedure of assimilation of meteorological
data obtained with up-to-date prediction models faces
certain problems while implementing an assimilation
algorithm because of the high order of the covariance
matrix of prediction errors.?

Taking into account this, as well as the need to
solve the problem of forecast on the mesometeorological
scale in the absence of global data, we propose a
simplified model describing the behavior of
meteorological parameters in space and time using the
first-order stochastic  differential equations. The
distinctive feature of this approach is a possibility to
dispense with the procedure of solution of a complex
set of hydrodynamic equations. Every atmospheric
parameter of interest is treated separately, and its
change in space and time is considered as a stochastic
process with known correlation properties. According to
the chosen approach, the prediction is made for a
certain point in space from observations of only several
meteorological stations. In this case, the dimension of
the state vector is limited, implementation of the
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filtering algorithm becomes simpler, and the stability of
the algorithm itself increases.

Solution of the problem of space and time
mesoscale forecasting is dictated by the need in
meteorological support of various economic and
national defense problems, such as

— assessment of spatial spread of technogenic
pollution to small distances (up to 100 — 200 km) from
the sources;

— diagnosis and prediction of the state of the
atmosphere (first of all, temperature and wind) at the
enemies territory for meteorological support of land and
air forces during local military missions.

It should be noted here that the study of the
problem of estimating and predicting the parameters of
the atmosphere state with the use of the Kalman filter
continues the earlier works,812 in which the
corresponding algorithms were based on the modified
method of clustering of arguments (MMCA). In spite
of marked advantages over the traditional methods of
regression analysis, including the method of optimal
extrapolation (these advantages include the possibility
of realization of an algorithm using limited sampled
data, multiple-criterion choice of the best model,
orientation at obtaining models of optimal complexity,
etc.), the MMCA has certain restrictions. They are
connected mostly with the necessity of prior obtaining
of some data sample with the total length about
N =k +1 (here k is the number of levels) and with the
requirement that the forecast interval is equal to the
measurement interval.

In this connection, it is necessary to develop the
prediction methods free of such restrictions and
allowing one to estimate a meteorological parameter at
an arbitrary point in space from the data of single
measurements at a local network of upper-air stations,
as well as in the time interval between these
measurements.

In this paper, we consider the methodic foundation
and algorithms for solution of this problem based on
the use of the Kalman filter.
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1. General theoretic aspects
of the formulated problem

The general requirement in synthesis of algorithms
for estimation of unknown parameters of a dynamic
system is the possibility of their description by a set of
differential or difference equations of the first order.!3
Difference equations can be written in the matrix form
as

X(k+1,L) =F(k, L) OX(k, L) + C(k, L) IW(k, L), (1)

where X(k+1, L) = |xq, 29, x3, x4, ..., x,|T is an (nx1)
column vector including unknown parameters of the
state of a dynamic system (vector of states);
k=0,...,K is the discrete current time with the
discretization interval At (¢, = kAt); L =0, ..., is the
discrete value of coordinates in the range of definition
with the step Az; (here: z;; = L Azj); z = |zq, 29, 23 are
coordinates of a point in the 3D space (zy, z» are plane
coordinates, z3 is the height); j is the index
determining the spatial coordinate (j=1, 2, 3); F(k, L)
is the (nxn) transition matrix for the discrete system;
W(k, L) =|wy, wy, w3, wy, ..., w,|T is the vector of
accidental perturbations of the system (generating
noise, state noise); C(k, L) is the (nxm) matrix of
intensities of accidental perturbations.

The mathematical model of measuring channels,
whose data are used for estimation of the system state,
is described, in the general case, by an additive mixture
of a useful message and measurement error:

Y(k, L) =H(k, L) IX(k, L) + V(k, L), (2)

where Y(R, L) =|y1, y2, y3, Y4, ..., ydT is the (sx1)
vector of actual changes; H(k, L) is the (nxs) matrix
of observations determining the functional relation
between the true values of state parameters and
measuring channels of the system; V(k, L) =
= oy, v, 03, Vg, ..., 0T is the vector of measurement
errors (measurement noise); T denotes transposition.

If the functions entering into Egs. (1) and (2) are
linear, the problem of estimation is solved with the use
of the Kalman—Bucy linear filter'415 that provides
estimation of the state vector from current
measurements with a minimal root-mean-square (rms)
errors. The equations of estimation in this case have the
following form:

X(k+1,L)=X(k+ 1|k, L)+ G(k+1, L) OY(k+1, L) -
~H(k+1, L) X(k+1|k, L)], (3)

where X(k+1,L) =|&y, &, &3, &4, ... , T is the
estimate of the vector of state at the time (k + 1);
X(k+ 1|k, L) = F(k, L) D?A((k, L) is the matrix equation
for calculation of the vector of forecast, X(k+1|k, L) is
the vector of predicted estimates at the time (k + 1)
from the data at the kth step; G(k+1, L) is the (nxs)
matrix of weighting factors.
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Note that the vectors X(k+1, L) and X(k+1|k, L)
have the dimension (nx1).

In the classic Kalman—Bucy linear filter,
calculation of weighting factors is a recurrent procedure
independent of Eq. (3). This procedures includes a
solution of the matrix equations for covariance of the
estimation errors!6:

G(k+1,L) =P(k+1|R)HT(k+1, L) x
x [H(k+1, DP(k+1|R)HT(E+1, L) + Ry(k+1, L)L
(4)
P(k+1|k) = F(k, L)YP(k|R)FT(k, L) + RyAk, L); (5)
P(k+1|k+1) = [I - G(k, L)H(k, L)] P(k +1|k), (6)

where P(k+1|k) is the (nxn) a posteriori covariance
matrix of prediction errors; P(kR+1|k+1) is the (nxn)
a priori covariance matrix of estimation errors;
Ry(k+1, L) is the (s xs) diagonal covariance matrix of
observation noise; Ry(k, L) is the (nxn) diagonal
covariance matrix of state noise; I is the (nxn) unit
matrix.

To start the filtering algorithm (4)—(6) at the
time k=0 (time of initiation), the following initial
conditions should be set: the initial estimation vector
X(0, L) = M{X(0, L)} (here M is the operator of
mathematical expectation); initial covariance matrix of
estimation errors P(0]0) = M{[X(0, L) — M{X(0, L)}] x
x [X(0, L) — M{X(0, L)}]T}, as well as the values of the
covariance matrices of noises Ry (0, L) and Ry(0, L).
In practice, the values of X(0, L) and P(0|0) can be
set based on the minimum information on the actual
properties of the system; in the case of complete
a;bsence of wuseful information, it is assumed that
X(0,L) =0 and P(0|0) =1.

2. Statement of the estimation problem
in terms of the Kalman filter

To formulate the problem of estimation in terms of
the Kalman filter, according to Eqgs. (1)—(2), we should
represent the meteorological parameters varying in space
and time as a dynamic system. We begin the formulation
of the problem with the assumption that the
meteorological parameters of our interest (for example,
pressure, temperature, humidity, orthogonal wind
velocity components, or others) are continuously
distributed in some space. This space is limited below
by the ground (see the figure) and limited above by the
height of the considered atmospheric layer (4); the
dimensions in the bottom cross section are determined
by the chosen mesoscale polygon. This polygon includes
(S — 1) arbitrarily arranged upper-air stations providing
measurement of the meteorological parameters within
the entire considered atmospheric layer with the height
resolution Azs. These measurements for some fixed time
t, can be presented as N-dimension profile (vector) with
each its component corresponding to a certain height
level z;3=hy, hy, hs, ..., hy. Tt should be underlined
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that the accuracy and frequency of measurements, as
well as height resolution are determined by parameters
of measuring instrumentation, and  they are not
considered in this paper.
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Fig. 1. Arrangement of measuring stations.

Physically, the task is to estimate (predict) a
meteorological parameter at the Sth point of a given space,
at which measurements are absent or impossible, from the
data of (S —1) measuring stations. We will consider
solution of this task on the mesometeorological scale.

The specificity of the mesoscale allows the splitting
method to be applied, i.e., allows the meteorological
parameters at some fixed height level to be estimated
(predicted)  neglecting  interconnection  between
neighboring levels. Thus, the entire height range can be
covered by N Kalman filters. Each filter uses
measurements obtained for a given height level at all
upper-air stations. The estimation (prediction) is made
for the same height level and for the point with the
plane coordinates (zq, z5).

Further reasoning is given for one filter meant to
an arbitrary height level.

Because the meteorological parameters have random
values, their statistical properties can be described by
the corresponding correlation functions M(T) in time
and p(p) in space. We can go from correlation functions
to differential equations describing the dynamics of
variability of random processes using the well-known
methods!7:18 through the Laplace transformation.

The correlation functions describing the time and
space  dependence of random components of
meteorological parameters, including temperature and
wind velocity, can be described by exponential
equations of the form:

p(t) = exp (- ar), )
u(p) = exp (- Bp), €]

where a = 1 /1y is the coefficient inversely proportional
to the time correlation interval Tg9; B=1/pg is the
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coefficient inversely proportional to the space
correlation interval py.

Assume that we need to estimate (predict) the
values of a meteorological parameter at the point S (see
the figure) with the coordinates (zg,, zs,); the stations,
at which this parameter is measured, are at the points
1,2, 3, ..., (§ — 1) with known coordinates. Assuming
that the values of 1) and py are constant on the
mesoscale, we write the system of generalized difference
equations describing the behavior of a random process
in space and time :

1(k + 1) an(k)(1 - BA71S)(1 —-a At) + Z@M(k);
2(k +1) :Xn(k)(1 - BATQS)(1 - aAt) + Zﬂ)Q(k);

W(R+1) =x,(R)(1 —aAt) + w,(k),

where X(k) = |x((k), x9(k), x5(R), ..., x,(R)|T is the
vector of the space of states in accordance with
Eq. (1), W(k) = |Z@1(k), EIUQ(k), w3(k), ceey Z@n(k)|T is
the column vector of state noise; Ar;g = [(zg, = 2;)> +
+ (zg, = 2;,)?]71/2 is the separation between the points
S oand i (G=1,2,3,...,5-1); (3, z,) are the
coordinates of the point i.

Note that the dimension of the state vector in such
a formulation is larger by one than the number of
measuring stations, i.e., n=1,2,3, ..., S.

We present the system of equations (9) in the
matrix form:

X(k+1) = F(At, Ar) IX(R) + W(R),
where

0 0 ...0 (1-BAry)
Do 0 ..0 (1—BA725)|:|

F(At,Ar) = (1 —ant) [0 0 .. 0 (1-BArse) []

is the (nxn) transfer matrix, in which all parameters
o, B, At, and Arig are thought known (i=
=1,2,3,...,5-1.

The system (9) allows us to introduce additional
state equations refining the mathematical model of the
dynamic system. Introduction of new variables into the
state vector X(k) and their corresponding description
lead to a change of the transfer matrix F(A¢t, Ar).

For example, the parameters a and B thought to be
constant and unknown can be introduced into the state
variables. The difference equations for these parameters
have the form

ak+1) = a(k);

B(k+1) = B(k). (10)

In this case, a filter can be synthesized that provides
simultaneous estimation of the meteorological parameter
and its intervals of space and time correlation. This
filter is nonlinear because the state equations acquire
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nonlinearity. Similarly to Eq. (10), the mean value of
the meteorological parameter (within the mesoscale)
can be introduced into the state variables. In this case,
random components of the state vector determine
variations of the process about the mean.

Now we consider models of measurement channels.
As the measurement channel, we mean the measurements
obtained from the meteorological station i (i=
=1,2,3,...,85—1) located at a point with known
coordinates. Assume that measurements of some
meteorological parameter are the additive mixture of its
true value and the measurement error:

y1(R) = x1(k) + v1(k);
yo2(R) = x5(R) + 0y(R);
y3(k) = x3(k) + v3(k); an

ys—1(R) = x,- (k) + vg_1(k),

where Y(k) = |y (k), yo(k), ys(k), ..., ys—1(R)|T is the
vector of measured values of the meteorological
parameter obtained from (S — 1) meteorological stations;

x1(R), x9(R), x3(R), ..., x,-1(k) are true values of the
same meteorological parameter that actually exist at
measurement points i=1,2,3,...,n—1, and n =S,

V(&) =|ovy(R), vo(k), v3(R|T, ..., vs_1(R)|T is the vector
of measurement errors.

Let us present the system of equations (11) in the
matrix form

Y(k) = HIX(k) + V(k), (12)
where

10

|:|0 1
H= |:|0

|:|0 0 ... 10 |:|
is the (S—1) xn matrix of observations. Equations (9),
(11)—(13) or more exactly, the matrices F(At, Ar) and H
completely determine the structure of the linear Kalman
filter (4)—(6) used for estimation of meteorological
parameters. However, for the atmospheric boundary
layer, where periodic (diurnal) changes of meteorological
parameters (first of all, temperature of air) are observed,
the use of Egs. (11) is possible only at a limited time
interval. To consider this process, an additional
function taking into account regular diurnal variability
of temperature should be introduced into description of
the measurement channel. Under mesoscale conditions,
because of temperature stability in the horizontal plane,
it is worth using the mathematical model taking into
account its mean value at the considered height level.

Introduction of the additional variable should be taken
into account by expansion of the state vector and

(e}

(13)

0 0
00|:|
00|:|
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change of the matrices F(At, Ar) and H. Let us make
the corresponding changes in state equations (9) and
equations (11) describing the measurement channels.

We introduce the expanded state vector with the
dimension n = (§ + 1):

XT(R) = |x1(R), x5(R), ..., x,—2(R), x,-1(R), x,(R)|,

which is the vector of the space of states, where
x1(R) — x,-9(k) is the amplitude of the diurnal
variability of temperature at the measurement points
i=1,2,..,(5—-1); x,q(k) is the amplitude of the
diurnal variability of temperature at the point S to be
estimated; x,(k) is the mean value of temperature for
the chosen level on the mesoscale.

In accordance with the new state vector XT(k),
the system (9) is complemented with one equation for
the mean temperature and takes the form:

1(k+ 1) = xn_1(k)(1 - BA7’15)(1 — aAt) + Z@1(k)
%2(’% + 1) = xn,z(k)(1 - BArzs)(1 - CXAt) + wz(k)

D,Z_Q(k 1) =1 (RO~ Blr 9y s) (1 — GAD + 0,y (R)
n—1(k+1)= Xn_1(k)(1 - 0At) + Z@n_1(k)
n(k+1) = x,(k)

(14)

The (nxn) transfer matrix in this case takes the form

F(At, Ar) =
.0 (1 _GAt)(1 _BAT15) (U
0 0 ... 0 (1-0AD)(1 —BAryg) 0 L

0 0 ... 0 (1 —aA)(1 —BArgg) 0
L (-aan-parsp 0 L1

00 ..0 (1 - aAt) 0
—0 0 ... 0 0 1 =

where the parameters o, [, and At, as well as the
distances Ar;g between the measurement points
i=1,2,3,...,(5-1) and the sought point S are
assumed to be known.

The law of temperature change during a day
corresponds to the cosine function, therefore the
measurement channels can be described by the
following equations:

Hl(k) = 5,(0) + 2y (R) cos (55 b, = 10 + 0,(R)

2 () = 5,0) + (k) cos (55 b, = 10 + 0(R)

5-9k) = 2,01 + 59k o5 (37 1~ 0 + 055(k)
55—1(/?) = x,(k) + x5-1(k) cos (E—Ztk -1 +0vg_1(k)

(16)
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where
YT(k+1,L) = |y(R), yo(k), ..., ys—a(k), ys—1 (k)|

is the measurement vector; o((k), ..., vg_1(k) are
measurement errors; ¢, is the local time at the
measurement k.

The (S — 1) xn matrix of observations in terms of
the introduced state vector has the form

H-=

2T
Dos(24tk—n) 0 0 01

2m
=|:| 0 cos (57t =10 ... 0 01

0 :

[

7

It is assumed that measurements are taken
synchronously at the time moments %k at regular time
intervals At.

Equations (14), (16) and matrices (15), (17) fully
determine the structure of the Kalman filter for
estimation of temperature at the point S.

In conclusion, it should be noted that the
efficiency of the proposed methodic approach to
estimation and prediction of mesometeorological fields
can be judged from the data of the field experiment.
The results of research with invoking many-year upper-
air measurements obtained at a typical European
mesometeorological polygon are the subject of the
second part of this paper.
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