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Four well-known algorithms for calculation of the Voigt profile [R.J. Wells, J. Quant. Spectrosc.
Radiat. Transfer 62, 29-48 (1999); M. Kuntz and M. Hopfner, J. Quant. Spectrosc. Radiat. Transfer

63, 97-114 (1999); J. Humlicek, J. Quant.

Spectrosc. Radiat. Transfer 27, 437 (1982); and

S.R. Draison, J. Quant. Spectrosc. Radiat. Transfer 16, No. 7, 611-614 (1976)] are compared in the
speed and accuracy. It is shown that the Draison’s algorithm provides the best results. Simple estimating
equations are given for optimization of the rule of transition from one grid to another in a multigrid
algorithm [B.A. Fomin, “Effective line-by-line technique to compute radiation absorption in gases,”
Preprint TAE-5658 /1 (Russian Research Center “Kurchatov Institute,” Moscow, 1993); B.A. Fomin, J.
Quant. Spectrosc. Radiat. Transfer 53, 663—669 (1995)] for the line-by-line method.

Introduction

The line-by-line method for calculation of the
absorption characteristics of a gaseous medium? is known
as a reference one and used both for verification of
various approximate transmission models and for direct
simulation of radiative transfer in molecular absorbing
media. In this connection, development of new highly
efficient algorithms is an urgent problem being of
considerable interest for specialists. In this paper, we
compare several algorithms for calculation of the Voigt
profile and describe further development of one of the
most efficient algorithms for speeding up the line-by-
line method — the so-called multigrid algorithm.2:3

Comparison of algorithms for
calculation of the Voigt profile

Calculation of line profiles is the most
computationally expensive part in calculating the
integral transmittance. Choosing the highest-speed and,
at the same time, most accurate algorithm for calculation
of the Voigt profile, one can achieve significant speedup
of the line-by-line program. In this paper, we consider
four algorithms: Wells—99 (Ref. 4), Kuntz—99 (Ref. 5),
Humlicek—82 (Ref. 6), and Draison—76 (Ref. 7).

The table compares these algorithms in the time
consumed by each of them for calculation of the Voigt
profile. The results are given both for the possible
extreme values of x and y and for two actual conditions

of calculation
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where x = \/E (v-vg)/yp and y = \/E Y./ Yp are
the dimensionless parameters; v —vg is frequency
detuning from the line center; yp and yp are,
respectively, the Lorentz and Doppler line halfwidths
at halfmaximum. The results for actual conditions were
obtained for vertical paths of 0—10 and 0—100 km in
the spectral region of 1000—1005 cm~! for the gases
H20, COz, and 03.

Table. Time needed to different algorithms
for computation of the Voigt profile,
in rel. units

Computational | Drajson=| FHumitcek | nt,-09 | Wells-99
x=0; y=0.001 19.0 16.0 19.1 20.7
x=0; y=50 4.2 71 4.2 8.8
x=50; y=0.001 3.5 8.9 4.4 13.1
x=50; y=30 3.5 8.0 4.3 8.8
Actual
conditions:

(0-10 km) 6.2 8.6 7.0 9.3
(0-100 km) 89.0 154.0 115.0 195.0

The table shows that it makes sense to combine
the advantages of the Humlicek—82 algorithm in the
range of small x and y with the advantages of the
Kuntz—99 or Draison—76 algorithm in the range of large
x and y. Under actual conditions, the Draison—76 and
Kuntz—99 algorithms are likely the most time-saving.
However, when using the Draison algorithm, it should
be modified, because the initial algorithm does not
allow simultaneous calculation at an array of values of
the parameter x (Ref. 7).
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Fig. 3. Relative error of the Humlicek—82 algorithm (Ref. 6).

The results of comparison of the algorithms in the
accuracy are shown in Figs. 1—4. The calculated results
were compared with the results of exact numerical
calculation of the Voigt profile fy,. The maximum error
of the Draison—76 algorithm in our calculations was
half as much as the error of the Schreier algorithm.8 It
is seen that the maximum errors of all the four
algorithms in the range x, y < 20 differ insignificantly
(no more than by 30%) and are sufficiently small for
these algorithms could be used in the line-by-line
calculations. Only in the range x, y <5 the Wells
algorithm has a marked advantage in the accuracy but
loses in the computational time.

It is worth noting that the Kuntz—99 and Humlicek—
82 algorithms insignificantly differ in accuracy.

Optimization of the frequency grid

When calculating the integral transmittance, one
has to calculate the spectral transmittance T, at some
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Fig. 4. Relative error of the Draison—76 algorithm (Ref. 7).

frequency grid. The simplest grid is uniform. It allows
the integral transmittance to be calculated with high
accuracy, but the time needed for calculation is
inversely proportional to the grid step.

As was mentioned above, calculation of line
profiles is computationally expensive. Therefore, the
efficiency of the line-by-line algorithms can be
improved by optimizing (minimizing without loss in
accuracy) the number of points at which the profile of
each line is to be calculated. This is possible in
principle, because the line profile becomes smoother far
from the line center.

In this paper we consider a highly efficient,
convenient, and illustrative multigrid method proposed
by Fomin (Refs. 2 and 3) and used in Refs. 5 and 11.
This method uses a set of uniform grids with doubling
steps h;:

m=hy2, 1=0, .., L;
V(L) =Vin+ hl ].7 ]: 07 1r cee
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where 7% is the step of the finest grid (which is chosen
based on the mean line halfwidth under given
conditions and the needed accuracy); | is the grid
number; L is the number of the coarsest grid; vy, is the
initial frequency of the computational region. One can
see that eleven grids are enough to increase the step
from 0.001 cm™! (characteristic width of a line in the
upper atmosphere) to 1 cm™!, i.e., three orders of
magnitude. The absorption coefficients are calculated at
the grid nodes. The number of the grid, at which the
contribution of a specific line is calculated, increases
with the distance from the line center. In such an
approach, the profile of each line is calculated
independently of other lines. Figure 5 schematically
illustrates the grid expansion of a line profile. This
illustration is borrowed from Ref. 2.
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Fig. 5. Illustration of the multigrid algorithm for calculation
of transmittance.?

Thus, the contribution of any line is summed
separately at its own grid for every part of the profile.

Once all lines are considered, the recurrent
procedure recalculates the contributions from coarse
grids to finer ones. This procedure is based on a simple
square (or linear) interpolation; it allows the sought
absorption coefficient to be finally determined at the
nodes of the finest grid. This procedure is executed only
once and, as a rule, for the time negligibly short as
compared to the complete computational time.

Implementation of the described multigrid
algorithm minimizes the time needed for calculation of
the spectral transmittance without loss in accuracy. The
gain in time due to use of the multigrid algorithm can
be more than an order of magnitude.?3

The further development of this method is in
optimization of the rule of transition from a coarse grid
to a finer one. In Ref. 2, such a transition is carried out
when there are less than three steps of the used grid
from the current point to the line center. This rule
gives an error no higher than 1% at square interpolation
and the finest grid step hg = yv /4, where yy is the
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Voigt halfwidth. Disadvantages of this approach are
fixed accuracy and independence of the transition
coordinates on the halfwidth of a specific line. Another
transition rule was proposed in Refs. 5 and 10. It is
based on exact numerical determination of the
maximum error in the square three-point interpolation
of a profile. In this paper, we propose an algorithm
based on the approximate but simple estimation of the
maximum grid step providing the needed relative error
in the square interpolation of the Voigt profile at a
given distance from the line center. The transition to a
coarse grid is carried out in the case that with the
distance from the line center the step needed to achieve
the required accuracy becomes larger than or equal to
the grid step. This allows us to avoid calculations at
unnecessary points.

In this paper, we use the approximation of the
absorption coefficient for a line with the Voigt profile
(this approximation was proposed in Ref. 12 and
described in Ref. 8):

K(nyr— B2y 0, it - 6@ + FL@), (1)

G =exp(- 25y,  LdH=1,0+),
M= -vp) /w; =y /w; S is the line intensity.

Let us consider the case of square interpolation of
an individual line at a grid with the step 72 = Av /yy.
The relative error & of the square interpolation of the
function K(*) at some point ¥ is described by the
equation¥:

where

5=—— 1) (g -2) s, 2
6K(Q)q(q )@= @

where
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is the third derivative of the function K(¥) some
intermediate_point in the interval [QZ, Q + 2?

= (¥- Ql)/%. Here ¥ and ¥ (M- <27) are the
frequencies of the ith node point and the point of
interpolation, respectively. Assuming that the third
derivative and the function itself vary only slightly
within the interval [Q,-; Ql- + 2h], we take the value of
the third derivative at the point ¥ (i.e., K" (&) as its
maximum value. Obviously, this assumption is true for
the most part of the profile. This approximation can
only slightly overestimate the value of the maximum
error in the interval [&}; & + 2/]. Then let us find the
maximum value of the product ¢ (g — 1) (g — 2).
Differentiating it in terms of dg, we can find
max[g(g—1)(g—2)]=2/(3\3) at gmax=1-/1/3.

299 (3
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Based on these results and substituting Eq. (3)
into Eq. (2), we deriye the equation for the optimal
(maximum) grid step ?; providing the relative error &
at a given distance ¥ from the line center:

hs = 32B x 028[(1 — B exp(-1n2k2) + B/ (1 + k&) /

/(228 exp(-In2R)(1 — B (1 2 1n2k2) +

+ ol - k) (1 + By (4)

When solving Eq. (4) for & at given }! and 3, we
can find the coordinates | of transitions from fine grids
to coarse ones for a given set of the grids 7.

Figure 6 shows the grid step (expressed in
halfwidths) providing the relative error of interpolation
4=0.001 as a function of the distance to the line
center. The case 9 << 1 corresponds to prevalence of the
Doppler broadening of an absorption line, and the case

01 corresponds to the Lorentz broadening. It is seen
that at 9< 0.5 the minimum optimal grid step
providing the given accuracy of interpolation can be
rather far from the line center — at a distance larger
than 3 halfwidths. As the case of purely Lorentz
broadening is approached, the position of the optimal
grid step minimum approaches the distance [0.36
yv = 0.36 yi. from the line center.

7
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Fig. 6. Optimal grid step providing the relative error of the

square interpolation 8 = 0.001 as a function of the distance to
the line center for the Voigt profile at different E =YL/ V-

Peaks in Fig. 6 (and the symmetric peaks in the
region of negative & that are not shown in this figure)
correspond to the zero of the third frequency derivative
of the Voigt profile, i.e., profile inflection, and are due
to the used approximation. Obviously, these peaks can
be ignored.

The absorption coefficient K(v) not always is the
final sought parameter; it is often used for calculation
of the optical thickness T(v) =exp {— K(v) L} (L is the
path length), whose relative error 8T is proportional to
the absolute error of the absorption coefficient
(dT/dK =T L O AT /T =0T = AK L). Therefore, it is
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worth using the equation for the step providing a given
absolute error A:

B
A="Fq (=1 (qg-2) s,

wherefrom we can obtain
hia = 325 x 0(20) / (Kol 1n22% exp{-1n2k2}(1 - }) x

x(1 -5 2k + 250 - ) a + oY o)

where K, is the absorption coefficient at the line
center. It is equal to S\/ 2/mK(Q0, y)/yp for the
Voigt profile. The plots of nes E) for A/ Ky = 0.0001
are shown in Fig. 7. One can see from the figure that
the minimum of the optimal step is within (0.4-0.7)yy
from the line center as E varies within wide limits
(from 0.001 to 0.999).
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Fig. 7. Optimal grid step providing the absolute error of the
square interpolation A = 1074 K as a function of the distance
to the line center for the Voigt profile at different E =VYL/W.

Conclusions

In this paper, we have compared several available
algorithms for calculation of the Voigt profile. The best
performance (in combination of two parameters:
computational speed and accuracy) was demonstrated
by the Draison algorithm.

The estimating equations for optimization of the
rule of transition from one grid to another in the
multigrid algorithm are obtained. The advantage of
these equations is their simplicity, although they are
insufficiently exact.

It should be noted that it is suffice to solve the
equation like Eq. (4) (i.e., for the fixed relative error
of interpolation) only once for all spectral lines of a
given gas, because it weakly depends on A/In2 y; /Yp.

In the case of fixed absolute error of interpolation,
the equation like Eq. (5) should be solved individually
for every line (or for a set of lines with close values of
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Ky). By this reason, the step of the finest grid
(determined by the minimum value of the optimal step)
in the case (4) is almost the same for all lines, whereas
in the case (5), the parameters of the line having the
maximum value of K should be used for its calculation.
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