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Brownian diffusion of aerosol particles near a sedimentation surface is considered. The generalized
coefficient of Brownian diffusion is introduced and calculated. This coefficient depends on the problem’s
geometry, Knudsen numbers, and accommodation coefficient of gas molecules. The diffusion component of
the speed of macroscopic drift of particles towards the surface is analyzed for different values of
characteristic parameters using the thermophoretic mechanism as an example.

Introduction

Microphysical theory of aerosol transport and
evolution (thermophoresis, diffusophoresis,
photophoresis, and coagulation) in a boundless weakly
nonequilibrium gaseous medium can be now considered
as rather well developed. 1,2 At the same time, there are
significant gaps in understanding of mechanisms and
qualitative description of aerosol sedimentation from a
gaseous medium onto a surface. Sedimentation (or its
prevention) plays an important part in many
technological processes, in particular, in production of
high-quality optical fibers for aerosol reactors,
sedimentation of particles in plane-parallel and round
channels (to develop highly efficient gas-purifying
equipment), etc. Sometimes, to the contrary, the
task is to prevent sedimentation of particles onto
a surface from dusty gas flows (such a situation
occurs in  production of silicon blanks for
microelectronics, in nanotechnologies, in motion of a
dusty gas along pipe-lines).

It becomes evident that mathematical simulation
of such applied problems and, especially, reliable
estimation of the effects are impossible without detailed
gas-kinetic analysis of the problem. At the same time,
most significant mechanisms of non-gas-kinetic nature
that accompany sedimentation of aerosol particles
should be taken into account as well. Among these
mechanisms, the Van der Waals attraction forces
between a particle and a surface at a very small
distance between them and Brownian diffusion of
particles, which is very significant at normal
atmospheric conditions for particles of micron and
submicron size being near the sedimentation surface,
deserve attention in the first turn.

In this paper, the phenomenon of Brownian
diffusion  is  considered  using  thermophoretic
sedimentation as an example. The significance of this
phenomenon for different flow conditions and thermal
properties of a particle and gas is evaluated.
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1. Generalized coefficient
of Brownian diffusion

According to the first Fick’s law, the flow of
particles through a surface perpendicular to the OZ
axis is written in the form j = —-Ddc/dz, where D is
the coefficient of Brownian diffusion, and c¢ is
concentration of particles. According to the second
Fick’s law, dc/dt = Dd%c /022, under the assumption
that the concentration varies in space only along the
OZ axis. The coefficient of Brownian diffusion can be
calculated in the following way. Let diffusion occur in
the OZ direction. Let us consider a straight cylinder
whose section equals unity, the axis is parallel to OZ,
the lower base coordinate is z, and the upper base
coordinate is z + Az. Thus, the cylinder volume is Az.
Diffusion of particles in the cylinder generates osmotic
forces acting on its bases. The osmotic pressure of a
dissolved substance in a solvent (in our case, particles
in a gas) is p=ckT, where k is the Boltzmann
constant, and 7T is temperature. Assuming that the
temperature is constant within the cylinder, let us write
the pressure gradient in the form dp,/0z = kTdc/dz.
This pressure gradient with the opposite sign is equal to
the osmotic force acting upon all particles in the
cylinder and referred to unit volume, i.e., —Fgy,/Az.
On the other hand, the osmotic force is equal to the
resistance force acting on every particle in the cylinder
multiplied by the number of particles: Fogy = FDcAz.
Let us write the resistance force acting from the gas to
a particle moving with the speed U as FD = BU, where
B accounts for the problem geometry, the conditions of
flow by the Knudsen number, and the degree of
accommodation of gas molecules on the surface. Then
O0p/0z = kTdc/0z = —BcU. However, J =cU is the
diffusion flow along the OZ axis. According to the first
Fick’s law, we obtain the coefficient of Brownian
diffusion

D = kT /. €))
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2. Rate of diffusion sedimentation

Let us consider stationary diffusion from a zone
with constant concentration ¢ = ¢y towards a wall on
whose surface ¢ = 0. According to the first Fick’s law,
the flow of settling particles to the wall is J = Dcg/a,
where a is the distance from the zone with the constant
concentration to the wall. Thus, the rate of stationary
diffusion sedimentation of a particle can be estimated as

Ugit=D/a. )

For non-stationary diffusion, using the second
Fick’s law with the corresponding initial and boundary
conditions, we obtain the non-stationary diffusion rate
for a particle near the wall at ¢ > 0

Ugiila, t) = %H/Zexp B 4a—D2tH/erf B WH(S)

This  expression  asymptotically tends to
Ugit= D/a(1 — a?2/4Dt) as t — « what corresponds
to the estimate (2). The equation of diffusion of aerosol
particles contained between two walls spaced by the
distance L from each other at the same initial and
boundary conditions has the solution3

T ZEXPB L2 H

n=0

x2n1—+151n HZn + 1)%5

As t - oo, the decisive part is played by the first
2D
Oz, t) = exp B Dt

X sin %H and the diffusion flow at the distance a

c(z, t)

term of the series

from the wall z = 0 is equal to

exp H T[2DtHcos %H (4)

wherefrom the diffusion rate of an aerosol particle
between plates is

Ugitf(a) = HL[QHcotan %H (5)

If a <<L, this expression transforms into Eq. (2), i.e.,
it corresponds to the stationary case in the presence of a
single plate.

](0)(61, t) =

3. Main conclusions

Equation (1) for the coefficient of Brownian
diffusion includes the coefficient B accounting for the
dependence of the resistance force on the distance
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between the particle and the plane, particle size, flow
conditions, and accommodation properties. The ratio of
diffusion and thermophoretic sedimentation rates
y= Uygit/Ur is interesting for evaluation of the
significance of Brownian diffusion. In particular, under
viscous conditions with sliding, using the results of, for
instance, Ref. 4, we obtain

kT pTo(2 + N) 1
T a 9MN2R|OT] W(a, A’

(6)

where a@/R =cosh a, n is gas viscosity, p is gas
density, A is the thermal conductivity ratio of the
particle and gas, |OT| is the absolute value of the
external temperature gradient, and W(a, A) is the
function tabulated in Ref. 4. One can see that the part
of Brownian diffusion increases with increasing
pressure, temperature, and molecular mass of the gas
and decreasing viscosity.

Brownian diffusion is more significant for small
(submicron) particles as they approach the surface
(a OR). Let us consider an example. Let Ty = 300 K,
p=1ke/m3, n=103ke,/mB, |O7T|=103K/ m,
R =0.1 um, a=2R. Then y=22Q+N)/
/IWCA, a =1.25)]. For such particles, the rate of
Brownian diffusion to the surface far exceeds that of
thermophoretic sedimentation near the wall.

Under free-molecule conditions,> the coefficient is

CkTy 15 H
Y= 32R2)\ 32R2A, 07| gﬁ ™

Here Ag is thermal conductivity of the gas and m is
mass of a gas molecule. For estimation, let us take
Tp=300K, Ag=102 W/mK, |OT|=103K/m,
R =0.1 um, @ = 100R. Then for a gas with molar mass
M =0.016 kg /mole, we obtain y= 4. Thus, under the
free-molecule conditions at a sufficient distance from
the wall, Brownian diffusion plays an important part
for submicron particles as well. However, since
y=1,/72, the influence of diffusion decreases quickly
with increasing particle radius and almost vanishes for
R =1 pm.
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