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The paper presents a study of the influence of orientation of the hexagonal water ice crystals  on 
the intensity of backscattering from an unpolarized  incident radiation. A detailed physical analysis of the 
processes of formation of the beams mostly contributing into the backscattering is presented. 

 

The elements of the backscattering phase matrix 
(BSPM) of hexagonal crystals were calculated in Ref. 1 
using the method of beam splitting (MBS). It was 
shown that the highest intensity of backscattering is 
observed when the radiation is incident along the 
crystal axis or perpendicular to one of four 
quadrangular sides. These peaks are very narrow due to 
large size of a crystal, so the dependence of the 
intensity of backscattering on other orientations plays 
significant role in calculation of the intensity averaged 
over the ensemble of particles. This paper presents 
detailed physical description of the influence of crystal 
orientation on the intensity of backscattering from 
unpolarized incident radiation. 

 

 
 

Fig. 1. Geometry of scattering on an arbitrary oriented 
hexagonal crystal. 
 

The size of a hexagonal crystal is determined by 
the following parameters: L is the length along the 
crystal axis, a is the radius of the circle circumscribed 
around the hexagonal basis. Orientation of the crystal 
relative to the incident radiation is defined by three 
Euler angles α, β, and γ (Fig. 1), β is the angle 
between the incident radiation direction and the crystal 
axis, α is the angle between the reference plane and the 
plane containing the axis of the incident radiation beam 
and the crystal axis, and γ is the angle of rotation 
about the crystal axis. In what follows below we 

always perform averaging over the angle γ with the 
probability density 3/π: 

 M(α, β) = 
3
π ⌡⌠

0

π/3
 

 
M′(α, β, γ) dγ, 

where M′(α, β, γ) is the BSPM of an arbitrary oriented 
hexagonal crystal. At γ = 0 one of the sides of the 
crystal is perpendicular to the plane containing the axis 
of the incident radiation beam and the crystal axis. It 
was shown1 that in the case of backscattering one can 
restrict oneself to the orientations α = 0 without any 
loss of information. It was also revealed1 that the 
behavior of M11(0, β) element as a function of β is 
principally determined by the hexagonal crystals with 
the orientation at γ = 0 (β ≠ 0). 

The dependence l11(0, β) for thin hexagonal 
plates (β ≠ 0; 90°) calculated without the account of 
interference by MBS1 is shown in Fig. 2. 
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Fig. 2. The dependence of M11(0, β) on the angle β for an 
ensemble of hexagonal plates oriented uniformly about the 
axis. 

 

To explain such a complicated behavior of 
l11(0, β) as a function of β, let us carry out detailed 
analysis of the process of the beam formation using as 
an example the hexagonal plates with γ = 0. The plate 
cross sections passing through its axis and the normals 
to two opposite quadrangular sides G1 and G2 are shown 

in Figs. 3$5. The boundaries of the formed beams are 
shown by solid arrows. To imagine the process of the 

beam formation in Figs. 3$5, it is sufficient to follow 
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the trace of an arbitrary beam between the boundary beams 
(dotted arrows in Fig. 3). The beams outgoing along the 

backward direction are of two types: (a) the beams going 

out from the hexagonal basis O1 (see Fig. 3); and (b) the 

beams going out from the side G1 (see Fig. 4). 
 

 
 

Fig. 3. The diagrams of formation of beams in the hexagonal 
plates with γ = 0, which are outgoing from the plate bases and 
make the greatest contribution to the backscattering at a slant 
incidence of radiation. 

 

 
 

Fig. 4. The diagrams of formation of beams in the hexagonal 
plates with γ = 0, which are outgoing from the side and give 
the greatest contribution to the backscattering at a slant 
incidence of radiation. 

 

Only the beams "a" of 4-, 6-, and 8-fold interaction 
are shown in Fig. 3, however, it is clear that the beams 
of greater multiplicity can be formed at certain values 
of β, a, and L. The beam 1 in the upper part of Fig. 3 
is incoming, beams 2, 3, and 4 are outgoing, and the 
beams 2, 3, and 4 in the lower part are incoming, and 
the beam 1 is outgoing. It is seen that the beams 1 and 
2 in Fig. 3 are mutually inverse for 4-fold processes of 
the formation of beams outgoing from the bases O1, 1 
and 3 are inverse for the 6-fold processes, and 1 and 4 
are inverse for the 8-fold processes. The total area of 
the cross section of two such beams is expressed 
through the parameters β, a, and L as follows: 

 Sa(β, a, L) = 
2aL cosβ sinβ

n
2 $ sin2β

 , (1) 

where n is the relative refractive index. 

Since no total internal reflection on the bases O1 
and O2 occurs for the beams "a," it is sufficient for 
further analysis to restrict oneself to the consideration 
of the 4-fold beams "a." It is a characteristic peculiarity 
of the beams "a" that their contribution is significant at 
the values β from 0 to 58°, because the total internal 
reflection on the side G2 takes place in this case. 

Quite different pattern is observed for the beams 
"b," because the total internal reflection on the bases O1 
and O2 takes place at β > 32°, and so one cannot ignore 
the beams of higher multiplicity. Three processes are 
shown in Fig. 4, when all beams incident on the side G1 
are outgoing through G1 backwards as a result of the total 
internal reflection, i.e., the beam has the maximum area. 
It is more easy to understand this fact if one imagines the 
dividing of the beam incident on the side G1 into two 

equal beams 1 and 2 and to follow their traces inside the 

crystal separately. The middle beam passes through the 

middle of the side G1 in all three cases shown in Fig. 4, 
and occurs at the border of the side G2 after the internal 
reflections. The extreme beams incident on G1 occur at 
the middle of the side G2. The dotted vertical lines in 
the middle of the figure divide the bases into three 
equal parts, and into five parts in the lower figure. 

In contrast to the beams "a," the cross sections of 
which are always greater than zero, the beams "b" can 
have zero cross section. Three processes are shown in 
Fig. 5, when all beams outgoing from the side G1 propagate 
along the direction of the externally reflected beam. The 

extreme beams incident on G1 occur at the border of the side 

G2 in all three cases. The dotted vertical lines in the middle 

of the figure divide the bases into two equal parts, and into 

three parts in the lower figure. 
 

 
 

Fig. 5. The diagrams of formation of beams in the hexagonal 
plates with γ = 0, which are outgoing of the side and give the 
smallest contribution to the backscattering at a slant incidence 
of radiation. 

 

One can determine the values of the angles βmax, 
at which the cross sections of the beams "b" are 
maximum and the values βmin, when the cross sections 
of the beams "b" are equal to zero, by the formula 
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 β(j, g) = arccos (n/ 1 + g2/j
2), (2) 

where the half-integer values j correspond to maxima, 

and integer ones to minima, g = 3 a/L (the ratio of 
the bases’ lengths to the plate thickness). 

In the general case of arbitrary β, a, and L one 
portion of the beams is outgoing from the particle 
through the side G1 in the backward direction, and the 
other one propagates along the direction of the 
externally reflected beam. The portion of the beams 
outgoing backwards is determined by the formula 

 f(β, g) = 2 mod(j(β, g), 1) h(t(β, g)) + 

 + 2 [1 $ mod(j(β, g), 1)] h($t(β, g)). (3) 

Here mod(x, 1) is the difference between x and the 
neighbor integer to x so that  

0 ≤ mod(x, 1) <1;  j(β, g) = g cosβ/ n
2 $ cos2β; 

 t(β, g) = 1/2 $ mod(j(β, g), 1); h(x) = 1/2(1 +⏐x⏐/x). 

The total area of the beams "b" outgoing 
backwards is calculated by the formula 

 Sb(β, a, L) = aL sinβ f(β, g). (4) 

The dependences Sa(β) and Sb(β) for the 
hexagonal plate of the size close to that shown in 
Fig. 2 (a = 200; L = 30.64) are shown in Fig. 6 except 
for the common factor aL. 

The value Sa(β) reaches its maximum at β ≈ 51.2°. 
The comparison of the behavior of the curves 

M11(0, β) in Fig. 2 and Sb(β) in Fig. 6 shows entire 
coincidence of the position of the five right-hand side  
minima and four maxima on the β axis. The fifth and 
other maxima are only weakly pronounced. This means 
that the contribution of the beams "a" to the 
backscattering prevails on the interval 0 < β < 42°. The 
contribution of the beams "a" and "b" are comparable 
on the interval 42 < β < 64° and the contribution of 
the beams "b" prevails at 64 < β < 90°. 

 

S=(β)

β0 10 20 30 40 50 60 70 80
0

0.14

0.28

0.42

0.56

0.7

0.84

0.98

1.12

1.26

Sb(β)

 
 
Fig. 6. The dependence of the cross sections of the beams "a" 
(dotted line) and the beams "b" (solid line) on the angle β for 
a hexagonal plate. 

The function M11(0, β) is shown in Fig. 7 for the 
hexagonal water ice columns of the diameter 
2a = 131.44 μm and the length L = 400 μm. 
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Fig. 7. The function M11(0, β) for the ensemble of hexagonal 
columns uniformly oriented about the axis. 

 
The aforementioned reasoning for plates can be 

used for columns, taking into account that in this case 
the bases and sides change their roles. So the formulas 
(1)$(4) has the following form for columns: 

 Sa(β, a, L) = 2 3 a2 cosβ sinβ/ n
2 $ cos2β , (5) 

 β(j, g) = arcsin (n/ 1 + g2/j
2), (6) 

where the half-integer values j correspond to maxima, 

and integer ones to minima, g = L/ 3 a; 

 f(β, g) = 2 mod(j(β, g), 1) h(t(β, g)) + 

 + 2 [1 $ mod(j(β, g), 1] h($t(β, g)), 

j(β, g) = 
g sinβ

n
2 $ sin2β

 , t(β, g) = 1/2 $ mod(j(β, g), 1), 

 h(x) = 1/2(1 + ⏐x⏐/x);  (7) 

 Sb(β, a, L) = 3 a2 cosβ f(β, g). (8) 

The functions Sa(β) and Sb(β) for the hexagonal 
column of the size analogous to that shown in Fig. 7 
(a = 65.72; L = 400) are shown in Fig. 8 except for the 

common factor 3 a2. It is seen that the position of the 
extreme left-hand side peak in the curve Sb(β) in Fig. 8 
coincides with the position of the similar peak in the 
curve M11(0, β) in Fig. 7, while the second from left 
peak in Sb(β) practically coincides with the position of 
the maximum of the curve Sa(β). 

Obviously, at g ≈ 1 the maxima from the beams 
"a" and "b" should coincide. It is confirmed by the 
behavior of the curve β(1/2, g), which is the 
dependence of the position of the first maximum of the 
contribution of the beams "b" on the ratio between the 
size of the hexagonal plates g (Fig. 9). As the 
contribution of the beams "a" quickly decreases after 
β > 58°, it is clear that at least one maximum from the 
beams "b" is displayed starting from g > 2. 
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Fig. 8. The dependence of the cross sections of the beams "a" 
(dotted line) and the beams "b" (solid line) on the angle β 
for a hexagonal column. 

 

Fig. 9. The dependence of the angle β, at which the greatest 
contribution of the 4-fold beams "b" into the backscattering is 
observed, on the ratio of the size of hexagonal plates. 

 
 

Let us note for the conclusion that the 
aforementioned results significantly differ from that 
obtained in Ref. 2, where only one maximum in M11(β) 
was revealed in the interval 0 < β < 90°, at β ≈ 32°, 
independently of the relationships between the largest 
and smallest size of the crystal. Besides, two maxima at 
β = 0 and 90° were noted in Ref. 2, which are 
significantly lower than that at β ≈ 32°. 

It has been shown in Ref. 1 that the maximum at 
β = 0  is prevalent for the majority of hexagonal 
crystals, and the maximum at β = 90° is prevalent only 
for long columns of small diameter. The results of this 
paper make an evidence of the fact that one can observe 
a set of well pronounced extrema in M11(β) as β 

changes. The positions  of these extrema depend on the 
ratio between  the diameter of the hexagonal crystal and 

its length. 
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