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A system of ordinary differential equations with delay is used as a mathematical model of the 
processes in a nonlinear ring-shaped interferometer. The boundaries of the stability domains are 
calculated. Based on the bifurcation diagram, phase pattern, and Fourier spectrum, the nonlinear 
dynamics of structuring in the beam cross section has been identified. 

 

This paper continues earlier investigations into the 
much complicated dynamics in the model of the 
structure forming processes. These processes manifest 
themselves in the structure of a laser beam cross section 
propagating through a nonlinear ring-shaped 
interferometer (NRI) containing several Kerr media 
with the coupled optical fields.1 The peculiarity of this 
model is in the possibility of accounting the time delay 
Š of the optical field in the feedback loop of the 
interferometer. This possibility was first discussed in 
Ref. 2, but was left unstudied. Practically, it is 
interesting to reveal the joint influence of the 
nonlinearity K, delay T, and optical field turn by an 
angle Δ in the feedback loop of the interferometer on 
the dynamics of the structure forming processes. This is 
urgent because of NRI application in adaptive 
atmospheric optics.3 

According to Ref. 2, the turn of the optical field 
by the angle Δ = 2π/N, where N is the number of 
feedback loops in the interferometer (Ref. 1, Fig. 2). 
For Δ = 120° (N = 3) the dynamics of nonlinear phase 
modulation in the ring interferometer is described by 
three equations: 

 τ duj(t)/dt + uj(t) = K[1 + γ cos (ui(t $ T))], 

where j = 1, 2, 3; i = 2, 3, 1; uj(t) > 0 is the phase 
difference in the jth channel; τ is the relaxation time; T 
is the delay time; K is the nonlinearity parameter; γ is 
contrast.  

The equation was solved using the fourth-order 
Runge#Kutta method. The analysis of stationary 
solutions for stability has allowed construction of the 
bifurcation diagrams on the plane: stationary solutions 
u1* $ nonlinearity parameter K with regard for the 
normalized delay time ν = T/τ, where τ is the 
relaxation time of the nonlinear part of the refractive 
index (Fig. 1). 

Comparison of the bifurcation diagram with the case 
of ν = 0 allows the following conclusions to be drawn: 

1) Delay of the field inside a ring-shaped 
interferometer initiates the appearance and/or shift  

(along K axis) of bifurcation points in the stability of 
stationary states. However, the delay does not influence 
positions of the stationary states in the structure of the 
bifurcation diagram. 

2) As the field delay ν increases, the number of 
stable stationary states decreases, and the intervals of 
the nonlinearity parameter values, at which stationary 
states loose their stability, become wider. 

 

 
Fig. 1. 

 

Let us consider the interval of values of the 
nonlinearity parameter K (from 0 to 6.62), within 
which all uj are identical, that is, the monostability-
like structure is formed in the cross section of a laser 
beam. The effect of the delay ν manifests itself in the 
appearance of an unstable state in the lower branch A 
at ν = 0.44 (see Fig. 1). The distance along the K axis 
between the pair of the stability bifurcation points 
formed in such a way increases with the increase of ν. 
This increase is limited by the values K′ = 2.05 and 
K″ = 5.07, which the bifurcation parameter K 
approaches asymptotically with the increasing ν. 
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Fig. 2. 

 
It was found that the loss of stability by the 

stationary states is accompanied by the appearance of a 
stable limiting cycle, that is, Andronov#Hopf 
bifurcation takes place.4 As the bifurcation parameter K 
increases, only periodic motion without bifurcation in 
the period doubling takes place in the lower branch A. 
Similar transitions from the stationary state to the 
limiting cycle (Andronov#Hopf bifurcation) and back 
are observed also at sections of the diagram B situated 
above the branch A and corresponding to the same type 
of states when all uj are identical. However, here the 
sequence of period doubling bifurcation points appears 
as the bifurcation parameter K increases. Besides, 
windows of periodicity are observed in the branch B, 
that is, simpler periodic motions appear. Therefore, one 
can state that the dynamics becomes more complicated 
when passing to the branch B in the bifurcation 
diagram. 

The phase portrait in the plane (u1, u2) and the 
temporal energy Fourier spectrum taken together help 
us to reveal peculiarities in the complex motion. They 
are shown in Fig. 2, respectively, at Δ = 120° and 
K = 5.3. It is widely accepted to judge on the degree of 
a motion chaos from the presence or absence of  

pronounced narrow peaks (maxima) in the motion 
frequency spectrum. If the motion is periodic, then its 
Fourier spectrum has narrow peaks. As the motion 
approaches the chaotic mode, continuous frequency 
distribution appears in the spectrum.4 If we are guided 
by these indicators, then based on the results of 
simulation we can conclude that chaos is induced by 
both the growth of the nonlinearity parameter K and 
by a decrease in the turn angle Δ. 

The above results of the study of bifurcation and 
chaotic behavior of the processes of structuring in a 
NRI with delay can be used in the development and 
optimization of devices of atmospheric adaptive optics, 
which were considered in Ref. 3. 
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