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One of possible mechanisms of generation of laser radiation harmonics in light scattered from a 
medium in the front of a shock wave is studied theoretically. Interference of upper quantum states can 
produce a pronounced effect on the spectrum of scattered radiation: combined frequencies can appear in 
the spectrum of scattered light along with the  multiple frequencies, close to them. 

 

It is well-known1 that laser radiation harmonics 
can appear in the front of a shock wave arising at the 
laser-induced break-down of a medium. The nonlinear 
effects that can occur in the domain of a shock wave are 

the main cause leading to appearance, in the multipole 
moment of the ensemble of atoms that interacts with 
radiation, of summands containing harmonics of the  
incident exciting radiation. In this paper, we consider 
one of the ways to describe this phenomenon. 

The situation is simulated in the following way. 
Assume that we have an ensemble of three-level atoms 
moving in the front of a shock wave. The upper two 
levels of atoms are assumed to be close in energy. It is 
assumed that movement of these atoms with respect to 
a medium whose atoms are  not yet involved in the 
process occurs at a certain average velocity V. This 
velocity varies with acceleration a due to "friction" 
(interaction with motionless atoms). A plane 
monochromatic light wave whose frequency coincides 
with the frequency of atomic transition from the first 
level to the second is incident on this ensemble. The 
symmetry of atom states is assumed to be such that 
transition from the first level to the second one is 
possible in the dipole approximation. Adding 
parameters connected with the properties of the 
thermostat to the wave equation for the ψ-function, we 
phenomenologically take into account the effect of 
collisions of individual atoms with the particles of the 
surrounding medium which is considered as a 
thermostat. 

Here we start from the nonlinear Schro⋅⋅dinger 
equation2 obtained by the method of path integrals and 
describing the behavior of a subsystem of a large 
ensemble of particles: 

 i� 
∂ψ
∂t  = 

1
1 + iα T̂ ψ + Uψ 

iα
1 + α2 〈ψ⏐T̂⏐ψ〉 ψ, (1)  

where T̂ is the efficient operator of kinetic energy (its 
form for the considered approximation is presented 
below); U is the efficient operator of potential energy; 
α is the parameter connected with the properties of the 
medium which involves the subsystem studied. 

Nonlinearity of this equation is connected with the 
reduction of the problem for an ensemble to a problem 
for a subsystem within it and implicitly reflects the 
reaction of the ignored part of the ensemble to changes 
in the subsystem isolated.3 

The solution of this equation written for an optical 
electron of an individual atom interacting with the 
environment can be represented in the following form: 

 ψ = 
ψ(r, t)

[〈ψ(r, t)⏐ψ(r, t)〉]1/2 . (2) 

The value ψ(r, t) satisfies the Schro⋅⋅dinger equation 
simulating the behavior of an atom’s electron in an 
anisotropic Markovian thermostat: 
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where e and m are charge and mass of the electron; P
∩

 is 
the momentum operator; A and ϕ are vector and scalar 
potentials of the electromagnetic field containing the 
optical electron of an atom; α and χ are non-negative 
parameters connected with thermostat density (those 
are the larger the more frequent the shock perturbations 
of the atom are). 

Omitting the summands of the second order  
of magnitude both in the equation and in its solution,  
one can represent the wave function satisfying Eq. (3) 
as the following product:  

 ψ(r, t) = exp[α (m/(2�)) (V ⋅ r)] ψ∼(r, t), (4) 

where ψ∼(r, t) is a solution of the equation 

 i� 
∂ψ∼

∂t  = 
1

1 + iα (Ĥ $ U) ψ∼ + U ψ∼ + 

 + (E ⋅ d) ψ∼ $ 
m

2e
 (a ⋅ d) ψ∼. (5) 
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The designations in Eq. (5) are standard: Ĥ is the 
Hamiltonian of a non-disturbed atom; U is the operator 
of its potential energy; d is the dipole moment 
operator; E is the strength of the electric component of 
the external electromagnetic field. 

Using the eigenfunctions ψk(r) of the non-
disturbed Hamiltonian as a basis, one can represent the 
solution of Eq. (5) in the form 

 ψ∼ = ∑
k=1

3

 Ck exp
⎝
⎜
⎛

⎠
⎟
⎞$ 

i
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 Ekt

 
$
 
γkt  ψk(r), (6) 

 γk = α (Ek $ Ukk)/�, 

where Ukk are the diagonal elements of the matrix of 
the potential energy operator. 

The coefficients Ck satisfy the following systems 
of equations which are valid in the approximation of 
rotating waves: 

 i� 
∂C1

∂t  = C2 
(E0 ⋅ d12)

2
 exp[$ i (K ⋅ R) $ (γ2 $ γ1)t] + 

+ bC3 
(E0

 

⋅ d13)

2
 exp[$iω32t $ i(K ⋅ R) $ (γ3 $ γ1)t]; (7) 

 i� 
∂C2

∂t  = C1 
(E0 ⋅ d21)

2
 exp[i (K ⋅ R) + 

 + (γ2 $ γ1)t] $ (1 $ b)C3 
m

2e
 (a ⋅ d23) × 

 × exp[$iω32t $ i(K ⋅ R) $ (γ2 $ γ1)t]; (8) 

 i� 
∂C3

∂t  = bC1 
(E0 ⋅ d31)

2
 exp[iω32t + i (K ⋅ R) + 

 + (γ3 $ γ1)t] $ (1 $ b)C2 
m

2e
 (a ⋅ d32) × 

 × exp[iω32t $ (γ3 $ γ1)t]. (9) 

In Eqs. (7)$(9), E0 is the amplitude of the 
external electromagnetic wave which is resonant to the 
atomic transition from the second level to the first one; 
R is the radius vector of an atom; dij are the matrix 
elements of the dipole moment; b is the parameter 
which equals 1 if transitions between the first and third 
levels are allowed in the dipole approximation; 
otherwise, it equals zero (in this case, transitions 
between the second and third levels are supposed to be 
allowed). The system of equations was constructed 
under the assumption that attenuation constants are 
considerably less than the frequency ω32, and the latter 
frequency, in its turn, is considerably lower than the 
frequency of incident electromagnetic radiation. 

The solution of the system (7)$(9), without the 
regard of the parameter b, up to the terms of higher 
orders of smallness, has the form 
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Here Ω is the Rabi frequency: 
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�
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The constants Ai, Bi, and Di  are defined by the 
initial conditions. 

If the expressions (10)$(12) contain summands 
describing   the interference of quantum states, that 
leads, in calculating the dipole moment of an individual 

atom using  ψ∼(r, t), 

 〈d(t)〉 ≈ d
∼
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) + ...], (14) 
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to appearance of summands oscillating not only at the 
frequency of external radiation and its harmonics but 
also at combination frequencies. These oscillations must 
evidently induce electromagnetic waves propagating 
mostly along the direction of the external laser 
radiation. 
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