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The algorithms simulating cw Doppler wind lidar operation in the turbulent atmosphere are 
described in the paper.  The algorithms are realized in the LabView environment.  The computer codes 
include parts simulating the atmospheric turbulence, lidar return signal, and signal processing to extract 
information on the mean wind and its turbulent characteristics.  The codes developed are a virtual tool 
allowing one to perform effective statistical planning of experiments on sounding the wind turbulent field 
under different conditions in the atmospheric boundary layer. 

 

1. Introduction 
 

The cw Doppler lidars developed at present are 
intended, first of all, for studying the dynamic processes 
in the boundary layer of the atmosphere.1$6

  Such systems 
when equipped with a beam steering device to scan the 
atmospheric volume under study allow one to measure 
three components of the wind velocity vector at different 
heights and then to reconstruct the height profiles of 
the mean velocity.  Results of theoretical and 
experimental investigations5$7 formed a basis for the 

development of an optimal procedure of reconstruction of 
height profiles of the mean wind velocity allowing for a 

state of the atmospheric boundary layer. 
Along with measurements of the mean wind 

velocity a cw Doppler lidar can also be used to measure 
parameters of the dynamic turbulence such as the rate 
of turbulent energy dissipation, wind velocity variance, 
outer scale of turbulence, and vertical turbulent 
momentum flux. A description of the methods developed 
for measurements of these turbulent parameters with a 
scanning cw Doppler lidar can be found in Refs. 8$11. 
In this papers one can also find examples of 
reconstruction of the height profiles of turbulence 
parameters from the experimental data. However, the 
problems in providing desired accuracy of the Doppler 
lidar measurements of turbulence parameters and 
choosing optimal procedures of sounding (geometry and 
measurement time) depending on the thermodynamic 
state of the atmospheric boundary layer are still to be 
studied in a more detail.  It is obvious that comparative 
experiments using sensors at a meteorology mast are 
only possible in the lower part of the boundary layer 
up to the altitude determined by the mast height.   

In this paper we propose a method that is based on 
numerical simulations of a Doppler lidar operation for 

studying the accuracy of measuring the atmospheric 
turbulence parameters in the boundary layer of the 
atmosphere. In so doing we set the profiles of the 
parameters sought and then simulate random samples of 
lidar measurement data.  Thus simulated data are then 

processed and the variance of deviations of estimated 
values from the initially set reference profiles of the 
parameters sought is calculated. 

 

2. Simulation algorithm 
 

Figure 1 shows the geometry of conical scanning 
with a laser beam used in measurements with a cw 
Doppler lidar.  In this optical arrangement the beam 
moves along a conical surface about the vertical axis z 
at an angle ϕ with respect to the horizontal plane {x, y} 
at an angular velocity ω0. Here θ denotes the azimuth 
angle as a function of time t, i.e., θ = ω0t. By focusing 
the beam at a distance R a volume sounded is formed, 
with its center at the height h ≈ Rsinϕ. 

 

 
 

Fig. 1. Geometry of a sounding with a scanning lidar.  
 

From a single measurement in time t = θ/ω0 one 
can estimate only a radial component of the wind 
velocity vector Vr(z′, θ) which is related to the 
components of velocity vector V(r, t) = {Vx, Vy, Vz} at 
a fixed point r = {x, y, z} in time t by the relation 

 Vr(z′, θ) = sV(z′s, θ/ω0), (1) 

where z′ = | r | is the distance from the lidar to the 
observation point; s = {sinϕ, cosϕcosθ, cosϕsinθ}. 
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In successively scanning during equal time intervals 
t0 one obtains Doppler spectra of the recorded signal 
power W(f, mt0), where f is the frequency; 
m = 1, 2, 3, … is the number of the spectrum obtained.  
An estimate of such a spectrum is obtained by averaging 
individual (not smoothed) spectra measured during the 
time ts = 1/Δf, where Δf is the frequency resolution.  To 
decrease a level of fluctuations in the spectrum estimated 
that are caused by both the random variations of 
scattered wave field and system noise, one normally uses 
from one hundred to one thousand spectra in such an 

averaging.  For example, at Δf = 20 kHz and the number of 
individual spectra averaged Na = 1000 the time of 
measuring one spectrum is t0 = Na/Δf = 50 ms. 

With the account for the Doppler formula 
Δf = (2/λ)ΔV, where ΔV is the speed; λ is the 
wavelength; the Doppler spectrum is represented in the 

form  

W(kΔV, mΔθ) = Ws(kΔV, mΔθ) + Wn(kΔV, mΔθ), (2) 

where k = 1, 2, … is the number of the spectral channel; 
Δθ = ω0t0 is the resolution in the azimuth angle. The first 
term in Eq. (2) is the power spectrum of the recorded 

signal, which is completely averaged over its 
fluctuations with the distribution of the scattering 
particles' velocities in the volume sounded being 
unchanged ("frozen turbulence"). The second term 
describes the fluctuations of the spectrum estimated, their 
level being determined by the signal-to-noise ratio and by 
the time t0 of the spectrum measurements. 

When the volume sounded contains sufficiently 
large number of particles that scatter quite effectively, 
the effect of the second term in Eq. (2) on the value of 
the estimated velocity can be neglected.  Having this in 
mind and that such a situation occurs quite often in the 
boundary layer, the simulated results corresponding to 
the case when the estimated power spectrum of a signal 
coincides with Ws(kΔV, mΔθ) are presented below.  
Based on the results from Ref. 12 the spectrum 
Ws(kΔV, mΔθ) can be written in the form 

 Ws(kΔV, mΔθ) = 

= 
Δr

ΔV
  ∑

i=0

M′$1

   Qs(Δri) sinc2 
⎩
⎨
⎧

⎭
⎬
⎫

π ⎝
⎛

⎠
⎞

k $ 
⏐Vr(Δri, mΔθ)⏐

ΔV
,(3) 

where Δr is the spatial resolution along the optical axis z′; 
Qs(Δri) = {(πk0 a0

2) ((1 $ z′/R)2 + (Δri)2/(k0 a0
2))}$1 is 

the weighting function characterizing a contribution of 
each segment M′ of the path with the length Δr to the 

normalized signal power (Δr ∑
i=0

M′$1

  Qs(Δri) = 1); a0 is the 

initial radius of laser beam in the plane z′ = 0; 
k0 = 2π/λ, sinc(x) = sin(x)/x, k = 1, 2, …, MD$1 (MD 
is the number of the spectral channels); m = 1, 2, …, Ms 
(Ms is the total number of measured spectra).  When the 
frequency of the reference and sounding beams coincide 
(homodyne lidar system), as is the case considered here, 
it is necessary that the radial component of the velocity 

Vr(Δri, mΔθ) in Eq. (3) be taken by modulus. 

To estimate the velocity VD(mΔθ) from the 
Doppler spectrum Ws(kΔV, mΔθ), we use the following 
relationship: 

 VD(mΔθ) =  

= ΔV 
⎣
⎢
⎡

⎦
⎥
⎤

kmax + ∑
k=$k1

k1

 k Ws((kmax + k) ΔV, mΔθ)/S 
^

, (4) 

where kmax is the number of the spectral channel 
corresponding to the spectrum maximum;  
[ΔV(kmax $ k1), ΔV(kmax + k1)] is the interval of 
velocities, within which the value VD is being estimated; 

S 
^

 = ∑
k=$k1

k1

 Ws((kmax + k) ΔV, mΔθ). It is obvious that 

the index k1 introduced here must satisfy the following 
conditions: 

 k1 ≤ kmax, (5) 

  kmax + k1 ≤ MD $1. (6) 

To select k1, we introduce a concept of the 
effective spectrum width σs (in the units of speed) 
determined, for example, from the fall off of the 
spectrum Ws(kΔV) down to the level Ws(kΔV)/2 
when moving off from the spectrum maximum or as the 
second central moment of the velocity.11  Then we 
require the following conditions to hold: 

 σs << kmax ΔV, (7) 

 σs << (MD $ 1 $ kmax) ΔV; (8) 

 ΔV << σs; (9) 
and 
 σs << k1 ΔV. (10) 

The conditions (5)$(10) allow one, after substituting 
expression (3) into Eq. (4), passing from summation 
over k to the integration over V (ΔVk → V) and 
changing of sinc2(π(V $ |Vr |)/ΔV) for ΔVδ(V $ |Vr |), 
where δ(x) is the delta function, to obtain the 
following expression: 

   VD(mΔθ) = Δr ∑
i=0

M′$1

   Qs(Δri) ⏐Vr(Δri, mΔθ)⏐. (11) 

To correctly estimate the velocity VD from the 
data of field measurements, certain a priori information 
on the wind direction is needed. In simulating 
numerically this task we select the wind direction and 
therefore we can omit the sign of modulus of the value 
Vr in Eq. (11).  Let us suppose that the selected step 
Δr of sampling along the optical axis z′ satisfies the 
conditions that Δr <<  Δz, where Δz = (λ/2)(R/a0)2 is 
the effective longitudinal dimension of the volume 
sounded,11 and M′Δr > 2R.  Then the summation in the 
expression (11) can be changed for integration.  As a 
result, we have: 

 VD(mΔθ) = ⌡⌠
0

∞

  dz′ Qs(z′) Vr(z′, mΔθ). (12) 

Thus, when the conditions (5) to (10) hold, the velocity 
estimated from the data of numerical simulation will be 
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the radial component of wind velocity which is averaged 
over volume sounded. 

During the conical scanning a change of wind 
direction relative to the projection of a sounding beam 
on the horizontal plane occurs and the radial wind 

velocity component changes, correspondingly, its sign at 
a certain moment in time. It is obvious that at certain 

azimuth angles mΔθ, when Vr is close to zero, the 

conditions (7) and (10) cannot be satisfied. For such 

angles one can either make a more rough estimation of 
the radial wind velocity by assigning k1 ≤ kmax in Eq. (4) 
(however, in this case, as a rule, a problem on 

determination of the sign of VD arises) or remove that 
uncertain estimates from the data array intended for 

further processing to determine the parameters sought. 
In accordance with Eq. (3) one has, in order to 

obtain the Doppler spectra at different azimuth angles 
θ = mΔθ, to simulate random samples of the radial wind 

velocity Vr(z′, θ) connected with the three components 
of the wind velocity vector V(r, t) through formula (1).  
Simulation of three-dimension random field of the three 
velocity components with a desired spatial resolution is 
impossible to be performed on modern personal 
computers due to the limited internal memory and 
performance.  Therefore a simplified algorithm was used 
to simulate the radial wind velocity. 

Let us represent Vr(Δri, mΔθ), allowing for 
Eqs. (11) and (12), in the form 

 Vr(Δri, mΔθ) = VD(mΔθ) + ΔVr(Δri), (13) 

where 

 ΔVr(Δri) = V 
∼

r(Rm + Δri) $ 

 $ Δr ∑
i=0

M′$1

   Qs(Δri) V 
∼

r(Rm + Δri); (14) 

V 
∼

r = Vr $ <Vr > are the fluctuations of the radial 
wind velocity; Rm = ΔrNm; Nm = [2R cosϕ (m $
 1)Δθ/Δr].  Fluctuations of the velocity VD are 
determined, on the whole, by the turbulent vortices 
with the size l > Δz, and ΔVr is determined by the 
small-scale turbulence (l < Δz).  This allows one to 

consider the random processes VD and V 
∼

r as 
independent ones and simulate them separately.   

The velocity VD(mΔθ) was simulated in the region 
of the azimuth angles θ using the following expression 

for the correlation function: BD(θm, θl) = <V 
∼

D(θm) × 

× V 
∼

D(θl)>, where V 
∼

D = VD $ <VD>, which was found 

under the assumption on the stationarity, horizontal 
homogeneity, and isotropy of wind velocity field and 
"frozen" turbulent inhomogeneities13: 

 BD(θm, θl) = ⌡⌠
  0

 

⌡⌠
∞

 dz′ dz′′ Qs(z′) Qs(z′′) × 

 × ∑
i=1

3

 ∑
k=1

3

 Si(Δθm) Sk(Δθl) Bik(z′ S(θm) $ z′′ S(θl) + 

 + <V> (θm $ θl)/ω0), (15) 

where S1 = sinϕ, S2 = cosϕcosθ, S3 = cosϕsinθ; Bik(r) = 

= <V 
∼

i(r1 + r)V 
∼

k(r1)> is the spatial correlation tensor 

of wind velocity fluctuations; V 
∼

1 ≡ V 
∼

z, V 
∼

2 ≡ V 
∼

x, and 

V 
∼

3 ≡ V 
∼

y.  In the isotropic case of a solenoid-like  field 
of velocities for Bik(r) we have13: 

    Bik(r) = BV(r) δik + 
r

2  

dBV(r)
 

dr
 ⎝
⎛

⎠
⎞δik $ 

ri rk
r2

 , (16) 

where BV(r) is the longitudinal correlation function of 
wind velocity; r = | r |; δik is the Kronecker symbol.  As 
the model of BV(r), simple expression was used 

 BV(r) = σ2
V exp [$1.21(r/LV)2/3], (17) 

where σ2
V = BV(0) is the variance; LV = ⌡⌠

0

∞

 dr BV(r)/σ2
V 

is the integral scale of correlation of the wind velocity 
fluctuations (the outer scale of turbulence).  Since in 
the inertial interval of turbulence (r << LV) the 

structure function of the velocity DV(r) = 2[σ 2
V $ 

$ BV(r)] is determined by the expression13: 

 DV(r) = Ck ε2/3 r2/3, (18) 

where Ck ≈ 2 is the Kolmogorov constant; ε is the 
velocity of turbulent energy dissipation, then one can 
easily find from Eqs. (17) and (18) the expression  that 
relates  σV, LV, and ε: 

 ε = ⎝
⎛

⎠
⎞2⋅1.21

Ck

3/2

 
σ

 

2
V

LV
 . (19) 

Random samples of VD(mΔθ) were simulated by 
the method of linear transformation14: 

 VD(mΔθ) = <VD(mΔθ)> + ∑
m′=1

m

 amm′ ξm′
 , (20) 

where elements of the matrix amm′
 are connected with 

the elements of the correlation matrix BD(mΔθ, lΔθ) by 
the following relationship: 

 BD(mΔθ, lΔθ) = ∑
m′=1

m

 amm′ alm′
 . (21) 

In Eq. (20) ξm is the pseudo-random value distributed 
according to the normal law with the zero mean value 
and unit variance, and <ξm ξm′ > = δmm′

. 
To simulate random samples of the radial velocity 

V 
∼

r(iΔr), we have also used the model (17), but in 
contrast to VD(mΔθ), for which the BD(θm, θl) is not 
the function of difference of two arguments, here we 

have a possibility of using a more efficient algorithm.  
After numerical calculations of the spectrum  

 SV(i) = ⌡⌠
0

∞

 dr BV(r) e
$2πjir

 (22) 
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samples of V 
∼

r(iΔr) were simulated in the spectral 
region using fast Fourier transform:  

V 
∼

r(iΔr) = Re
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
k=0

N$1

 ξk ⎣
⎡

⎦
⎤1

2NΔr
 SV ⎝

⎛
⎠
⎞k

NΔr

1/2

 exp⎝
⎛

⎠
⎞2πj 

ki

N
, 

  (23) 

where ξk is the pseudo-random value that is distributed 
according to the normal law and satisfies the  
following conditions: <ξkξk′> = 0, <ξkξ*k′> = δkk′.  In  
expression (23) SV(k) must be symmetric relative to 
the Nyquist frequency: SV(k) = SV(N $ k). 

 

3. Simulated results 
 

In simulating Doppler spectra, the following 
parameters of a lidar were accepted: the wavelength 
λ = 10.6 μm, the initial radius of sounding beam 
a0 = 7.5 cm.  Figure 2 presents examples of simulation 
of the Doppler spectra Ws(V) for <Vr > = 10 m/s and 
various R, σV, and LV.  It is obvious that an increase 
in R or σV, and also a decrease in LV lead to the 
spectrum broadening.  Dashed lines in the figure show 
the estimates of the velocity using Eq. (4).  The more 
asymmetric the spectral distribution is the stronger such 
an estimate differs from ΔVkmax.   

 

 
 

Fig. 2. Examples of simulation of the Doppler spectra Ws(V) for <Vr > = 10 m/s and σV = 0.5 m/s, LV = 100 m, R = 100 m (a); 
σV = 1.5 m/s, LV = 100 m, R = 100 m (b); R = 50 m, σV = 1 m/s, LV = 100 m (c); R = 500 m, σV = 1 m/s, LV = 100 m (d); 
LV = 30 m, σV = 1 m/s, R = 200 m (e); LV = 300 m, σV = 1 m/s, R = 200 m (f). 
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Once the estimates of the velocity have been 
obtained at different azimuth angles during one 
scanning cycle those have been fitted by least squares 
method, in accordance with Eq. (1), to the dependence 

V 
^

r(mΔθ) = sinϕ V 
^

z + cosϕ [cos(mΔθ)V 
^

x + sin(mΔθ)V 
^

y], 
wherefrom the estimates of the  three components of the 

wind velocity vector V 
^

 = {V 
^

z, V 
^

x, V 
^

y} were determined. 
Simulation of the scanning lidar operation was 

performed under condition that one complete turn of a 
sounding beam about the vertical axis occurs during the 
time T = 7 s, and the time of measurement of one 
Doppler spectrum is t0 = 50 ms. Then a number of 
simulated spectra is Nsp = T/t0 = 140, and resolution 
in the azimuth angle is Δθ = ω0 t0 = 2πt0/T ≈ 2.57°.  
The spectra Ws(V) whose maxima are in the range 
ΔVkmax < 1 m/s were neglected and therefore  
the number of the obtained estimations of the  
velocity NV < Nsp. It is obvious that the smaller the 
mean wind velocity or the larger the angle ϕ, the 
smaller is the NV number. 

Figure 3 presents an example of the dependence 
VD(mΔθ) obtained from the simulated data on Doppler 

spectrum. The dependence V 
^

r(mΔθ) is shown by dashed 

line, and <V 
^

r(mΔθ)> by the solid line.  Here the 

values of the vector components <V> and V 
^

 are given. 
 

 
 

Fig. 3. An example of estimating Doppler spectra of VD(mΔθ) 

(dots), V 
^

r(mΔθ) (dashed curve) from simulated data; solid 

curve is <V 
^

r(mΔθ)>. 
 

From the data of numerical simulations assuming 
different number of scans at a height h the rate of 
turbulent energy dissipation ε, wind velocity variance  

σ2
V, and the outer scale of turbulence LV were 

determined. Description of the methods used to 
determine these parameters from measurement data 
obtained with a cw Doppler lidar can be found in 
Refs. 8$11. Here we would only note that ε is estimated 

by analyzing the deviations VD(mΔθ) $ V 
^

r(mΔθ), and 

to obtain information on σ2
V it is also necessary to know 

the mean width of the Doppler spectra and the variance 

of deviations of a single estimate of the wind velocity 
(for one scan) from the spectrum averaged over all scans. 

From the estimations of ε and σV obtained by 

formula (19) the outer scale of turbulence LV = cσ 2
V/ε 

is calculated, where the numerical coefficient c = 
= (2⋅1.21/Ck)3/2 ≈ 1.33 for the model of longitudinal 
correlation function of wind velocity used here. For 
example, if we use the model by von Karman13 
c ≈ 0.67. Thus, besides the statistical factors the 
accuracy of determination of the outer scale of 
turbulence LV from the Doppler lidar data will also be 
determined by the degree to which the selected model 
of correlation function of the wind velocity corresponds 
to real situation. 

The measurements in the atmosphere with a cw 
Doppler lidar aimed at reconstruction of the height 
profiles of turbulence9,10 have been conducted, as a 
rule, in succession at every of the selected heights (the 
height was given by change R or ϕ, h = R sinϕ). 
Normally one or several continuous complete scans (no 
more than three) were performed at each height.  Then 
in the pre-determined time intervals Tm ~ 2$5 min the 
procedure was repeated many times. During Tm the 
turbulence could change essentially and thus obtained 
estimates of turbulent parameters can be considered as 
statistically independent. By analogy with the field 
experiments at fixed heights hi where i = 1, 2, …, 6, 
we simulated the independent arrays of Doppler 
spectra.  In this case the angle ϕ = 30° was kept the 
same for all heights.  Every array corresponded to the 
set of spectra measured during one complete scan. 

The reconstructed profiles were the profiles of the 
mean wind velocity U(h), the rate of turbulent energy 

dissipation ε(h), wind velocity variance σ 2
V(h), and the 

outer scale of turbulence LV(h) calculated in 
accordance with the models6 (Table 1).   

 
Table 1 

 

Number of the curve 
(Figs. 6 and 7) 

h, 
m 

U,  
m/s 

σV,  
m/s 

LV, 
m 

ε,  
m2/s3

1 50 6.90 1.23 133 0.018
2 100 7.77 1.20 200 0.011
3 200 8.63 1.15 266 0.0077
4 300 9.14 1.11 300 0.0060
5 400 9.50 1.07 320 0.0050
6 500 9.78 1.02 333 0.0043

 

 

Figure 4 shows the examples of reconstruction of the 
profiles of the rate of turbulent energy dissipation from 

the data of numerical simulations for five scans at the 
each of the levels hi. The bold curve is the profile of 
ε(hi) presented in Table 1. It is obvious that estimations 

of the turbulent energy dissipation rate ε
^

(hi) are 
concentrated about the initial profile ε(hi), i.e., no 

regular displacement of the estimations ε
^

(hi) occurs. 
To calculate the relative error of the estimation of 

the rate of turbulent energy dissipation σ
ε
 = [<(ε

^

 $ 

$ ε)2>]1/2/ε 1000 independent estimations of ε
^
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obtained from the data of the numerical simulation 
were used. Figure 5 presents the dependences of relative 
error σ

ε
 on the number N of scans for the heights hi 

given in Table 1. It is obvious that the values of σ
ε
 at 

different heights are slightly different and with the 
increase of N (the bulk of the data processed) they 
decrease down to the level ~ 18% at N =10. 
 

 
 

Fig. 4. Examples of the reconstruction of the height profiles 
of the rate of turbulent energy dissipation from the simulated 
data for 5 scans.  Bold curve is the initial (reconstructed) 
profile of the dissipation rate ε(h). 

 

 
 

Fig. 5. The relative error of estimation of the rate of turbulent 
energy dissipation as a function of the number of scan samples. 

 
Figure 6 shows the calculated results on the 

relative error of estimation of the wind velocity 

variance σ
σ

2

V

 = [<(σ
^ 2
V $ σ 2

V)2>]1/2/σ 2
V.  Numbers at 

curves correspond to sounding height hi given in 

Table 1.  In contrast to σ
ε
, the errors σ

σ
2

V

 are 

different at the different heights. The lower the 
height hi is, the higher the relative error of 
estimation of the wind velocity variance is.  Such a 
behavior of σ

σ
2

V

 can be understood if it is taken into 

account that one of the terms in the formula for 

estimating the variance σ
^ 2
V is the mean square of the 

Doppler spectrum width.9,10  The higher the height hi 
is at a fixed angle ϕ, the larger is the longitudinal 
dimension of the volume sounded Δz and, therefore, the 
large the turbulent vortices will contribute to the 
Doppler spectrum broadening thus making it more 
informative with regard to random variations of the wind 
velocity in the volume sounded (compare Figs. 2c and 
2d).  As it follows from Fig. 6, at the number of scans 
N = 10 the value of σ

σ
2

V

 is within 17$25%. 

 

 
 
Fig. 6. The relative error of estimation of wind velocity 
variance as a function of the number of scans.  Numbers at the 
curves correspond to the heights presented in Table 1. 

 

 
 
Fig. 7. The relative error of estimation of the outer scale of 
turbulence as a function of the number of scans.  Numbers at 
the curves correspond to the heights presented in Table 1. 

 

The values σ
^

V and ε
^

 allow one to estimate the outer 

scale of turbulence by the formula L 
^

V = 1.33σ
^ 3
V/ε

^

. 
Figure 7 shows the relative error of estimation of the 

outer scale of turbulence σL
V
 = [<(L 

^

V $ LV)2>]1/2/LV 

at different heights hi.  The numbers at  the curves 
correspond to the notations in Fig. 6.  It is obvious that 

the error in estimation L 
^

V is caused by random 

variations σ
^

V and ε
^

, therefore the error σL exceeds the 

corresponding values of σ
ε
 and σ

σ
2

V

 (compare Figs. 7, 5, 

and 6).  At N = 10 the value of σL is within ~ 20$40%. 
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4. Conclusion 

 

In this paper we have discussed the algorithm of 
simulating the spectra measured with a cw Doppler 
lidar when scanning with the sounding beam along  
a cone. Based on the methods of lidar measurements  
of the atmospheric turbulence parameters that were 
developed in Refs. 8$11, the algorithms for estimating 
the rate of turbulent energy dissipation, variance of  
the wind velocity fluctuations, and the outer scale  
of turbulence from the simulated data have been 
constructed.   

Analysis of the accuracy of reconstructing the 
height profiles of turbulent parameters that were  
preset according to Ref. 6 has been performed.  The 
errors in determination of the turbulent parameters 
which are calculated from the simulated data conforms 
to the estimates of such errors in a field experiment.   
In particular, as was shown in Ref. 15, at 10 scans  
the measurement error in the rate of turbulent  
energy dissipation, in the case of nearly neutral 
temperature stratification of the atmosphere, is  
about 20%.   

The developed algorithm for calculation of the 
Doppler spectra and the computer codes written in the 
LabView language do, as a matter of fact, comprise a 
virtual tool for simulating the operation of a cw Doppler 
scanning lidar. This allows one to perform a statistical 
planning of experiments on sounding the wind 
turbulent field under different conditions in the 
atmospheric boundary layer. 
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