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Line-by-line calculations of IR radiative fluxes with the account of absorption by water vapor 
show that the fluxes and cooling rates are little sensitive to the step of frequency integration. This fact 
can be explained from the viewpoint of the probability theory. If the spectral absorption function of the 
water vapor molecule is considered as a random function, then the characteristics of its BspectrumB allow 
only a small number of points to be used to reconstruct it. The further decrease of the separation between 
the points gives the BexcessB information in terms of the Shannon theorem. 

 

1. Line-by-line calculation of the fluxes 
and cooling rates due to water vapor 

 

Calculation of radiative characteristics in climate 
models is rather time consuming mostly because the 
application of line-by-line method to calculation of the 
transmittance imposes strict requirements on the 
frequency integration: the step of 0.01 cm$1 at a 
medium pressure is a usual practice, at large altitudes 
the integration step is, as a rule, even smaller (see, for 
example, Refs. 1 and 2). 

At the same time, line-by-line calculations of IR 
radiative fluxes within the water vapor absorption 
spectrum indicate that the fluxes and cooling rates are 
not very sensitive to the step of frequency integration. 
Let us illustrate this statement by the examples of 
calculation of the net fluxes and cooling rates in two 
spectral regions involving water vapor absorption 
lines: 1.5$340 and 980$1100 cm$1 with the 

Voigt profile using different steps of the frequency 
integration. The former spectral region is characterized 
by a strong absorption, while the latter one is 
characterized by a weak absorption. The calculated 
results are shown in Figs. 1 and 2. 

One can see that in the 1.5$340 cm$1 spectral 
region the change of integration step over a wide range 
only slightly affects the fluxes and cooling rates in  
the region of medium pressure. Only the step 

δν = 10.0 cm$1 gives an obvious discrepancy. The 
calculation at large altitudes, above ∼ 100 km (i.e., at 
low pressure less than ∼ 10$1$2 mbar) actually requires 
a small integration step; even the step of 0.01 cm$1 
proves to be insufficient. The figure corresponding to 
the 980$1100 cm$1 spectral region is somewhat less 
illustrative, but it is just this region where the step of 
0.1 cm$1 is sufficient for close description of the fluxes 

and rates, while even the step of 1 cm$1 proves to be 
efficient for tentative estimates. 
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Fig. 1. Line-by-line calculation of the altitude behavior of the radiative flux (a) and the cooling rate (b) due to the absorption by 
water vapor in the 1.5$340 cm$1 spectral region at different steps of frequency integration δν. 
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Fig. 2. Line-by-line calculation of the altitude behavior of the radiative flux (a) and the cooling rate (b) due to the absorption by 
water vapor in the 980$1100 cm$1 spectral region at different steps of frequency integration δν. 
 

This fact is not surprising if we recall that 
statistical models for absorption bands of water vapor 
were used successfully in the pre-computer age.3 The 
possibility of using not very small frequency step in the 
case of water vapor can be explained from the 
viewpoint of the probability theory. It turns out that if 
the spectral absorption function of the water vapor 
molecule is considered as a random function, then the 
characteristics of the BspectrumB of this function allow 
it to be reconstructed using only a small number of 
points. The further narrowing of the separation between 
points gives BexcessB information in terms of the 
Shannon theorem. 

 

2. Introduction into the problem from 
the viewpoint of the probability theory 

 
Assume that we have a random function f (x; a) 

for (now conditional) variable x; the set of random 
parameters (for example, coefficients of series 
expansion of a random function over the orthogonal 
determinate functions (referred to as the Karhunen#
Loeve expansion). Let Ô(a) be the distribution 
function of the parameters =, so the statistical mean can 
be presented as 

 Ast = ⌡⌠ f (x, a) Ô(=) da.  (1) 

The situation is assumed stationary, that is, the mean 
determined by Eq. (1) is independent of x. 

Realizations of the random function f (j)(x) arise, 
if = acquires some values a 

(j) BallowedB by Ô(a). We 
can also introduce the mean over x (Δ x is the averaging 
range): 

 Aav
(j) = 

1
Δ x

 ⌡⌠ dx f (j) (x),  (2) 

which must depend on j (the number of realization) if 
following the formal definition (2). 

Usually the ergodic situation is considered 
irrespective of j (that is, for any realization) 

 Aav
(j) = Ast.  (3) 

Let us also note that if K(x) is the correlation 
function of a random function f(x; a) and S(t) is its 
Fourier transform we have: 

 S(t) = 
2
π
 ⌡⌠

0

∞

 K(x) cosxt dx, 

then the variances of these functions Δ x and Δt relate 
to each other by the following Buncertainty relationB 

 Δ x Δt ≅ 2π .  (4) 

With these definitions a question arises: at what 
points should f be measured as a function of x in order 
is mean to be calculated accurately? The Shannon 
theorem gives the following answer to this question: 
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where Δs is the width of the spectrum of the random 
function. Different relations can be obtained, but it is 
for certain that Δs > Δt. For most common (canonical) 
distributions4: 

 Δ s ≅ 3 Δ t .  (6) 

Equation (5) states that BmeasurementsB should be 
conducted at the points  

 xn = πn/(Δs) .  (7) 

Since 

 ⌡⌠
$∞

+∞

 
sin by

y
 dy = π,     b > 0, 

the integral (2) proves to be the sum f(xn). 
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The value of Δs is estimated from the relation 
following from Eqs. (4) and (6): 

 Δx Δs ≅ 6π ,  (8) 

in which 

 (Δ x) = 
⌡⌠ x2 f(x, a) Ô(a) da dx

⌡⌠ f(x, a) Ô(a) da dx
 ≥ (Δa)2,  (9) 

where Δa is the width of the Ô(a) distribution. 
Inequality (9) arises because the integrals entering into 
Eq. (9) are treated as a convolution of two 
distributions what always increases the variance. 

It follows from Eqs. (9) and (8) that the wider 
Δa, the smaller Δs. So, in view of Eq. (7), the points 
using which f is reconstructed prove to be separated 
more widely. 

 

3. Application  
to the absorption function 

 
Assume that the statistical model of the spectrum 

is well justified. The frequency ω plays the role of x; 
the set of line centers and intensities forms =; f(x, a) is 

the Bouguer exponent for random line centers and 

intensities. Within the framework of this model Eq. (1) 
corresponds to the absorption function. So we actually 

calculate Eq. (2). Besides, in calculations by the 

statistical model, ω disappears in Eq. (1), so the 
ergodicity of Eq. (3) can be considered valid. 

However, for the statistical model Δs can be 
considered to be rather small. The point is that any 
position of a line is assumed equiprobable; the 
distribution Δa in this sense is wide. The situation with 
 

the intensities S is quite similar. Often the exponential 
distribution ∼ exp (S/S0) is written with parameter 
S0, and it is also a wide distribution (ΔS = 0(S)). 

The Bwidth of the distributionB Δx can be 
estimated directly using the database of spectroscopic 
information. 

The calculation of the absorption coefficients and 
the estimation of the correlation function of 
distribution of the absorption coefficients and its 
variance made for some spectral ranges in the IR region 
give Δx ∼ 100 cm$1. It follows herefrom that 
ΔS ≈ 5 cm$1, what gives a very rough upper limit for 
the integration step to be 1.0$0.1 cm$1. 

Therefore, the points (7) can be separated rather 
wide, and a decrease in the separation between them 
simply gives the excess information in terms of the 
Shannon theorem. 

Thus, the decrease of the integration step in 
radiative calculations is not always justified from the 
viewpoint of the calculation accuracy. 
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