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We analyze a representation of random wave phase in different bases: the orthogonal Karhunen$

Loeve$Obukhov functions, Zernike polynomials, discrete Walsh functions, and Haar wavelets.  
Performance criteria of an adaptive optical system, which are used for determination of its potential 
efficiency, are represented in the paper, such as the phase compensation error and Strehl ratio. 

 

When an electromagnetic wave propagates 
through the atmosphere, phase distortions caused by a 
passage through a randomly inhomogeneous medium 
occur. Analysis of phase spatial modulation allows one 
to extract an information on parameters of the 
propagation medium.  The spatial phase modulation of 
a wave leads to changes in other parameters of 
radiation, in particular, in its intensity.  Such an effect 
of the phase may be used effectively to improve the 
power parameters of the emitted wave.  It is used 
widely in the methods of adaptive compensation for 
distortions in optical signals. Based on the information 
on phase distortions one may accomplish the 
optimization of the performance criteria of operation of 
an adaptive optical system (AOS). 

The phase of a received or formed signal is a 
complex mathematical object of the study.  For 
convenience of analysis the signal is represented as a 
series expansion over orthogonal functions, the choice 
of the latter being determined by the final goal of a 
problem. The minimum error of a random phase 
expansion at a given number of modes is obtained using 
the Karhunen$Loeve$Obukhov basis (KLO)1 and 
therefore its use is optimal for representation of a 
random phase.  Unfortunately, the optimal KLO basis 
has a complex analytical form, therefore, instead of the 
optimal basis, the Zernike basis, which is close to it, is 
often used in calculations.2,3 To reduce the time of data 
processing, it is convenient to use the bases having the 
properties of fast transforms such as Walsh and Haar 
ones.4  The authors have developed an effective method 
of transformation of the expansion coefficients of a 
random wave phase in an arbitrary orthonormal basis 
into the expansion coefficients in the optimal KLO 
basis.5$8  The performance criteria of AOS for various 
bases of random phase expansion are presented and the 
results of numerical experiment which allow one to 
estimate the efficiency of using the given bases are 
demonstrated in the paper. 

For modal compensation of wave front distortions 
in the systems of adaptive optics, the phase of a wave 
S(ρ) is presented as an expansion over the orthonormal 
functions ϕk(ρ)  (ρ = {x, y} = {ρ, θ}): 

 S(ρ) = ∑
k=1

∞

 ak ϕk(ρ). (1) 

In particular, the phase of a wave passed through 
a randomly inhomogeneous medium is represented often 
as an expansion into the Zernike polynomials Zk(ρ) 

(Ref. 2).  An advantage of this particular basis is the 
simplicity of analytical representation and relatively 
simple realization of first modes coinciding with the 
classical aberrations in the compensating devices of an 
AOS.  It should be noted that the given series 
expansion is not optimal from the statistical point of 
view that manifests itself in correlation of the 
expansion coefficients.  Owing to the complexity of 
analytical calculations of statistical estimations, the 
correlation of expansion coefficients is often neglected, 
hereby the accuracy of calculations decreases.  It is 
more convenient in this case to use the statistically 
optimal KLO basis.  For this basis a norm of the error 
of phase expansion averaged over an ensemble is 
minimal at a fixed number of terms of the infinite series 
expansion and the correlation of expansion coefficients 
is absent.1  This simplifies considerably the consequent 
use of the results of expansion and their analysis. 

To determine the degree of perfection of the basis 
used as a compensating device, the residual error of the 
wave front compensation is used  

 ε(ρ) = S(ρ) $ ∑
k=1

N

 ak ϕk(ρ). (2) 

It is a random function of coordinates where the  first N 

aberrations are removed successively from a phase 
distribution. The second moment of the compensation 
error ε(ρ) is a distribution of the phase error variance 

within the aperture σ2(ρ), which is a measure of accuracy 
of the approximation of a random phase in the 
orthonormal basis. Supposing that the compensation for 
the  first N modes is complete, we substitute the wave 
phase S(ρ) (in the form of Eq. (1)) in the expression (2) 
and, using the operation of the expectation, obtain the 
expression for the phase error variance σ2(ρ) (Ref. 3)  
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 σ2(ρ) = ∑
i≥N

  ∑
k≥N

 αik ϕi(ρ) ϕk(ρ), (3) 

where αik are the second moments of the phase 
expansion coefficients < aiak > or the coefficients of the 
Fourier-expansion of a correlation function over the 
basis ϕk(ρ). 

Let us present the profile σ2(ρ) = σ2(ρ, 0) for the 
fixed angle θ = 0 in the Zernike basis 

 σ2(ρ) = ∑
m = 0

   ∑
i≥N

  ∑
k≥N

 αm
ik R

m
i (ρ) R

m
k(ρ) (4) 

(Rm
k(ρ) are the radial parts of the Zernike polynomials 

Zj(ρ) = Rm
k(ρ)exp(imθ)). 

Coefficients α
m
ik can be obtained using the 

expression5  

 α
m
ik = ⌡⌠

0

R
 

 
ρdρ ⌡⌠

0

R
 

 
R

m
i (ρ) R

m
k(ρ′) Mm(ρ, ρ′) ρ′dρ′, (5) 

where R is the radius of an aperture; 

 Mm(ρ, ρ′) = − 
6.88π

r
5/3
0

 ⌡⌠
0

∞

 

 

Jm(κρ′) Jm(κρ) κdκ

κ
11/3  

for the Kolmogorov model of the atmosphere and  

 Mm(ρ, ρ′) = − 
6.88π

r
5/3
0

 ⌡⌠
0

∞

 

 

Jm(κρ′) Jm(κρ) κdκ

(κ2 + 1/L
2
0)

11/6  

for the Karman one; Jm(x) is the Bessel function of the 
first kind and mth order; L0 is the outer scale of 
turbulence; r0 is the Fried radius. 

To determine the variance of the phase error σ2(ρ) 
in the basis of Walsh rectangular functions Walk(ρ) 
(Ref. 4), the expression (3) at θ = 0 can be written as  

 σ2(ρ) = ∑
m = 0

   ∑
i≥N

   ∑
k≥N

 βm
ik Wali(ρ2) Walk(ρ2), (6) 

where the coefficients {βm
ik} = B are the correlation 

matrix of phase expansion coefficients in the Walsh 
basis.  Moreover, they can be determined from the 
matrix relation6  

 B = CT A C , (7) 

where A = {αm
ik}, C is the transformation matrix from 

the Walsh basis to the Zernike basis; T is the symbol of 
transposition. 

Note, that the Walsh functions are calculated by 
ρ2 in the expression (6).  It is caused by the fact that 
Walsh functions are determined as one-dimensional 
ones4 and for the given problem we construct their 
spatial form on a circle and take into account that the 
area of a surface element equals ρdρdθ in the polar 
coordinate system.  This remark should be taken into 
 

account also for the Haar wavelet functions presented 
below. 

To determine the phase error variance σ2(ρ) in the 
basis of Haar wavelets Hk(ρ), it is sufficient to replace, 
in the expression (6), the functions Walk(ρ) by Hk(ρ) 
and in (7) to replace C by the transformation matrix 
from the Haar basis into the Zernike basis. 

The most compact form the expression (3) has in 
the optimal KLO basis.  At a fixed angle θ = 0 this 
expression is as follows: 

 σ2(ρ) = ∑
m = 0

   ∑
k≥N

 λk [K
m
k(ρ)]2, (8) 

where Km
k(ρ) are the radial parts of the KLO functions 

Ψs(ρ) = Km
k(ρ)exp(imθ); λk are the eigenvalues of the 

Gram matrix A for a representation of the KLO 
functions in terms of the Zernike polynomials.7,8 
Eigenvectors of the matrix A compose the 
transformation matrix of the coefficients of phase 
expansion from the Zernike basis to the KLO basis.  
They allow one to transform the expression (4) into the 
expression (8). 

It should be noted that other statistical 
performance criteria are the functionals of σ2(ρ).  In 
Refs. 5 and 6 the authors have presented the 
transformation matrices from an arbitrarily basis into 
the optimal KLO basis.  These matrices allow one to 
simplify the cumbersome expressions such as (4) and 
(6), hereby simplifying significantly both the analytical 
calculations and numerical ones for the performance 
criteria of an AOS.  As an illustration, in Figs. 1 and 2 
the profile of σ2(ρ) calculated by the expressions (4) 
and (8) for the Kolmogorov model of turbulence 
assuming compensation for the first N aberrations is 
presented.  
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Fig. 1. The distribution of the phase error variance along the 
aperture radius for the KLO basis: correction of the average 
phase (1); correction of the average phase and the tilts (2); 
correction of the first four modes (3); correction of the first 
six modes (4); D is the aperture diameter. 
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Fig. 2. The distribution of the phase error variance along the 
aperture radius for the Zernike basis: correction of the 
averaged phase (1); correction of the averaged phase  and tilts 
(2); the same and correction for defocusing (3); the same plus 
correction for astigmatism (4). 

 

The complexity of an analytical form of the KLO 
basis and difficulties of its realization as a compensating 
device may be considered as disadvantages of the basis. 
In this case it is most convenient to use the rectangular 
functions such as Walsh discrete functions or Haar 
wavelets, which belong to the fast transform type.  
Usually the phase expansion coefficients are determined 
from the set of local tilts of a phase that is preceded by 
bulky numerical calculations. To reduce the time of 
convergence of the linear estimation algorithm, the fast 
transform algorithms are preferred, what allows one to 
use specialized processors. Figures 3 and 4 present the 
profiles of σ2(ρ) calculated by the expression (6) using 
the Walsh basis and analogous expression for the Haar 
basis and Kolmogorov model of turbulence when the 

first N aberrations are compensated for. Since the 
considered bases are not optimal, it is necessary to take 
into account a large number of modes. 
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Fig. 3. The distribution of the phase error variance along the 
aperture radius for the Haar basis when the compensation is 
carried out for all angle indices: correction of the first  
mode (1); correction of two first modes (2); correction of the 
first four modes (3); correction of the first eight modes (4). 
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Fig. 4. The distribution of the phase error variance along the 
aperture radius for the Walsh basis when the compensation is 
carried out for all angle indices: correction of the first  
mode (1); correction of the first two modes (2); correction of 
the first four modes (3); correction of the first eight modes (4). 

 

One can see from Figs. 1$4 that the phase error 
distribution along the radius for bases of rectangular 
functions is higher at the center of an aperture in 
contrast to the KLO and Zernike bases.  It is explained 
by the dependence of the Haar and Walsh functions on 
ρ2.  Note, that for the Haar basis the phase error 
variance is a little bit better than for the Walsh one 
because the Haar basis is a local one and has a larger 
number of degrees of freedom.  Note also, that the 
optimal KLO basis has the least variance  of the phase 
error. 
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Fig. 5. The Strehl ratio as a function of corrector aperture 
diameter for the KLO basis: is correction of the average phase 

(1); correction of the average phase and tilts (2); correction of 
the first four modes (3); correction of the first six modes (4). 
 

A convenient performance criterion for many 
optical systems is the Strehl parameter St that is the 
ratio of the radiation intensity in the focus of a real 
system to the intensity in a system without 
distorsions.9 Figures 5 and 6 show St as a function of 
the normalized aperture diameter when the various 
number of modes of the KLO and Haar bases are 
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corrected, respectively. The estimating calculations 
have been performed by the formula3 

 St ≈ exp ($ε2),  

where ε2 = S$1

⌡⌠
S

 

 
σ2(ρ) d2ρ is the compensation square 

error averaged over the aperture. 
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Fig. 6. The Strehl ratio as a function of corrector aperture 
diameter for the Haar basis when the compensation is carried 
out for all angle indices: correction of the first mode (1); 
correction of the first two modes (2); correction of the first 
four modes (3); correction of the first eight modes (4). 

 

It follows from Figs. 1$6 that in the expansions 
(4), (6), and (8) for the given number of corrected 
modes the KLO basis is the best.  As for the time 
intervals characteristic of the calculating algorithms, 
here the authors give a preference to the Walsh and 
Haar bases, because the transforms by these bases are 
executed in a more economic and quick way even if we 
take a relatively large number of expansion terms. 

From the researches carried out one can draw the 
conclusion that the considered bases have the mutually  

exclusive advantages, therefore we need a possibility of 
transforming from the expansion of a random wave 
phase in any basis to the expansion in another basis in 
order to use different properties of these bases for 
analysis and adaptive control of a wave front.  In 
particular, if the wave front reconstruction is carried 
out in an arbitrary basis requiring a large number of 
modes then it is sufficient to multiply the vector of the 
phase expansion coefficients in the given basis by the 
transformation matrix for the KLO basis.  In this case 
the compensating system is optimized, i.e., the 
combinations of the group of modes take a shape of the 
KLO functions.  It prepares potentially the system to 
receive a signal and in future the group of modes is 
controlled by one signal.  Thus, the number of control 
signals is reduced and it is not necessary to design a 
compensating device in the KLO basis, which, as ought 
to be noted, is changed when a state of the atmosphere 
is changed. 
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