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Methods of adaptive optics are applied to phase correction of an optical wave propagated through a 

turbulent medium. It is shown by numerical simulation that requirements to an adaptive optical system 
(AOS) under conditions of strong intensity fluctuations remain practically the same as for weak 
fluctuations. Similarly, the required size of an element of a segmented mirror is equal to Fried length r0, 
and the tolerable AOS time lag is equal to r0/V, where V is the velocity of turbulent inhomogeneities 
transportation. Strehl ratio in this case remains no less than 0.5. However, local slope sensors become 
therewith impracticable as well as the tip-tilt correction over the corrector subapertures. 

 

1. Introduction 
 

Propagation of optical waves through the 
turbulent atmosphere results first in distortion of the 
wave phase and then in random modulation of the 
intensity distribution over its cross section.1 If the path 
is long enough, intensity fluctuations (IFs) become 
very strong. As a result, the points appear, where the 
intensity is zero and phase has a spiral singularity also 
called a wave front dislocation. 2 Appearance of optical 
wave dislocations in the turbulent medium and their 
influence on the operation of phase adaptive systems 
have been discussed theoretically in Ref. 3. 
Experimentally, a significant degradation of the 
operation efficiency of an adaptive optical system 
(AOS) with a flexible mirror and a Hartmann wave 
front sensor under conditions of strong intensity 
fluctuations has been observed in Ref. 4. This 
conclusion is in close agreement with the results of 
numerical simulation performed in Ref. 5. 

Adaptive optical systems, which compensate for 
turbulent blurring of beams and images, are currently 
the subject of active discussions. However, it is yet to 
be determined how such principal AOS characteristics 
as the size of the corrector element needed and the 
tolerable time lag should be changed under conditions 
of strong IFs. Some problems in constructing the wave 
front sensor and the algorithm for phase reconstruction 
are also unclear as yet. 

This paper considers these problems as applied to 
phase correction of a plane wave propagated through a 
randomly inhomogeneous medium with Kolmogorov 
spectrum of fluctuations of the refractive index. This 
simplified statement allows "pure" consideration of the 
given problem. In the general case, a number of factors 
affect AOS operation at adaptive correction for image 
blurring due to turbulence.6 

Next, the paper considers the applicability limits 
of local slope sensors for the case of strong intensity 
fluctuations. The algorithm used allows the phase to be 
reconstructed from measured values of phase difference 

in the presence of spiral singularities. It also allows one 
to minimize the reconstruction discrepancy due to 
measurement errors.12,13

 The error of tip-tilt correction 
is analyzed. Thus, the principal restrictions on the use 
of the WF local slope sensors, such as Shack#
Hartmann sensor and shear interferometers, are also 
determined. 

 

2. Statement of the problem 
of numerical simulation 

 

The problem of optical radiation propagation 

through a turbulent medium is stated as follows. A plane 

wave propagates through a homogeneous turbulent layer 

of the length L (Fig. 1). This layer is characterized by 

the intensity of turbulent fluctuations of the refractive 

index C
2
n. The radiation wavelength is denoted as λ, and 

the wave number is k = 2π/λ. An AOS and a thin 
collecting lens are placed at the edge of the turbulent 
layer.  The size of an AOS aperture is D. These 
parameters determine two characteristic scales of the 
problem: the cross scale, i.e., Tatarskii length of 
coherence ρ0 or Fried length r0: 

 r0 = (0.489 k2 C2
n L)$3/5,  ρ0 = (1.46 k2 C2

n L)$3/5, 

 r0/ρ0 = (1.46/0.489)3/5 ≈ 1.93, (1) 

and the longitudinal scale, i.e. the turbulent length of 

diffraction Ld = kr
2
0. The dimensionless parameters of 

the problem are the scaled aperture diameter D/r0 and 
the scaled path length q = L/Ld. The parameter q is 

related to the scintillation index β2
0, which corresponds 

to the relative variance of plane wave intensity 
fluctuations in Rytov approximation1: 
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Note that the turbulent length of diffraction is 
determined through Fried length r0 rather than 
Tatarskii length ρ0. Equations (1) and (2) give the 
relation between them. 

 

 
 

Fig. 1. Wave propagation geometry. 
 

The propagation of a plane wave is described by 
the parabolic equation 
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for the complex amplitude U. The amplitude U is 
related to the scalar field strength E by the equation 
E(x, y, z) = U(x, y, z) exp {ikz $ iωt}. Here n $ 1 << 1 
are the random fluctuations of the refractive index 
n(x,y,z); ω is the frequency of the electromagnetic 
oscillations. The equation is supplemented with the 
boundary conditions for the plane wave that is being 
propagated along the axis OZ: 

 U(x, y, z = 0) = 1. (4) 

It can be solved numerically using the splitting 
method7,8 following a symmetrized scheme. Random 
phase screens were simulated by the technique 
described in Refs. 9 and 10. The complex amplitude 
and phase screens were simulated on a uniform 128×128 
computational grid.  The aperture of the collecting lens 
was placed at the central part of the grid with the size 
64×64 pixels. So, at D/r0 = 10 the grid step was 6.4 
times less than the coherence length. The random 
medium was stimulated by six phase screens. Instant 
distributions of the intensity at the lens focus were 
averaged over 50 independent random realizations. 

 

3. Adaptive system with  
a constant time lag 

 

Consider the influence of a time lag on the 
operation efficiency of the AOS with an ideal sensor 
and a phase corrector. The phase correction ϕ in this 
case is determined through the argument of the complex 
amplitude: 

 ϕ(ρ, t) = arg (U(ρ, t $ τ)),   ρ = (x, y), (5) 

where U is the complex amplitude of the field, as it 
leaves the turbulent medium, in the plane z = L; τ is 
the time lag introduced by the  AOS; t is time; arg 

denotes the principal value of the argument of a 
complex parameter. 

In the case of weak intensity fluctuations, at 
τV << D, the variance of the residual phase distortions 
is equal to the structure function, Dϕ, of the phase : 

 σ
2 ≈ Dϕ(τV) = 6.88 (τV/r0)

5/3. (6) 

The scaled intensity at the lens focus (Strehl 
parameter) can be approximately estimated as 

 SR ≈ exp ($ σ2) = exp [$ 6.88 (τV/r0)
5/3]. (7) 

A decrease in the Strehl parameter characterizes 
degrading efficiency of the AOS. The latter is 
apparently dependent on how the phase ϕ changes 
during the time τ. In the approximation of frozen 
turbulence (Taylor hypothesis) and provided that the 
wind vector V is independent of the longitudinal 
coordinate z, the change in the phase occurring during  
the time τ corresponds to the phase difference at the 
points separated by the distance Δρ = τV . 

In the vicinity of wave front dislocations, the 
phase changes very rapidly. Therefore, it would be 
expected that in the region of strong IFs the 
dependence of the AOS operation efficiency on the time 
lag τ becomes stronger. However, results of numerical 
simulation show that it is not the case. Figure 2 shows 
three versions of the dependence SR(τV/r0). One of 
them corresponds to calculation by Eq. (7); two others, 
which are the results of numerical simulation for weak 
fluctuations (q = 0.1) and strong fluctuations (q = 1), 
practically coincide. The difference between the results 
of numerical simulation and calculation by Eq. (7) can 
be explained by two reasons. The one may be the 
overestimation of the variance of residual distortions 
when calculated by Eq. (6) and the other one may be 
in the absence of inhomogeneities with the scales larger 
than the size of the computational grid (equal to 2D) 
in the simulated phase screens. 

 

 
 

Fig. 2. Strehl parameter, SR, as a function of the scaled time 
lag in the AOS with a constant lag. 
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Thus, the operation efficiency of AOS with a 
constant time lag insignificantly depends on the 
variance of the intensity fluctuations. This is likely 
explained by the fact that regions with fast changes in 
the phase (these regions are adjacent to wave front 
dislocations) are small and do not contribute 
significantly to the radiation power collected in the 
focal spot. 

 

4. Adaptive system with  
a segmented mirror 

 
Flexible adaptive mirrors with a continuous 

surface are ill-suited to correction under conditions of 
broken continuity of the wave front. Therefore, 
segmented mirrors are more promising for operation 
under conditions of strong fluctuations. Positions of 
individual elements in such correctors are independent, 
and the surface formed by them can be discontinuous. 
Discontinuity of the wave front can certainly be 
approximated by the surface of a flexible mirror as 
well, but this requires a far larger number of control 
elements. 

To construct an AOS with the given level of 
operation efficiency, one needs to know the 
corresponding size of an element of a segmented mirror. 
In the region of weak intensity fluctuations, we can use 
the following equation for the variance of residual 
phase distortions σ2: 

 σ
2 = 1.03 (d/r0)

5/3. (8) 

This equation corresponds to the variance of phase 
fluctuations within a circle of diameter d after 
subtraction of the average phase.11 In correcting for the 
average phase and the local tilts at every element of the 
segmented mirror, the variance of residual phase 
distortions is 

 σ
2 = 0.134 (d/r0)

5/3. (9) 

The estimate of Strehl parameter as SR = exp ($ σ2) at 
d = r0 gives the following values: SR = 0.36 when 
correcting for the average phase and SR = 0.87 when 
correcting for both the average phase and local tilts. 

If dislocations arise, unambiguous determination 
of the phase at the aperture becomes impossible. It also 
becomes impractical to control tip and tilt of an 
element by averaging the phase and its gradient over 
the aperture. Therefore, to study the influence of the 
size of the corrector element on the efficiency of the 
adaptive system operation in the case of strong 
fluctuations, define the phase correction on the area of 
size d in the following way: 

 ϕ + k Sρ, (10) 

where ϕ, Sx, and Sy are corrections of the average 
phase and the local tilts, respectively. These parameters 
can be determined from the complex amplitude 
averaged over a subaperture 

 ϕ = arg(U 
$

);     U 
$

= 
1
d2 ⌡⌠

d

 d2 ρ U(ρ) (11) 

and the weighted mean phase gradient 

 S = 
1

kP
 ⌡⌠ d2 ρ I(ρ)∇ ϕ(ρ) = 

 = 
1

kP
 ⌡⌠ (Re U ∇ Im U $ Im U ∇ Re U)d2 ρ. (12) 

Here the integral is taken over the area corresponding 
to the corrector element (subaperture) of the size d; 
I(x, y) = UU* is the incident radiation intensity; k is 
the wave number; P is the power at the subaperture, 

 P = ⌡⌠
d

 d2 ρ I(ρ). (13) 

This equations allow us to determine control over the 
corrector, while avoiding determination of the wave 
phase. They use the complex amplitude U known from 
numerical simulation as the initial parameter. 

Figure 3 shows the dependence of the SR 
parameter on the scaled path length q = L/Ld. Note 
quite good agreement between the results obtained and 
the above estimates by Eqs. (8)$(9) for the case of 
weak intensity fluctuations. The results presented 
indicate that the efficiency of this correction slightly 
depends on the scaled path length, which characterizes 
the level of intensity fluctuations. Moreover, 
practically no such dependence is observed in the case 
of correction only for the average phase (without 
correction for local tilts). On the contrary, even a slight 
growth of the SR parameter in the region 
0 < L/Ld < 0.4 is observed. This can be explained by 
the diffraction-induced transformation of the small-
scale part of phase fluctuations into the amplitude ones 
and the corresponding decrease in the residual phase 
distortions. 

 

 
 

Fig. 3. Strehl parameter, SR, as a function of the normalized 

path length L/(kr
2

0) in the adaptive system with a segmented 
mirror: control over tips of corrector elements (circles), 
control of tips and tilts (squares). 
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Note that when both the average phase and local 
tilts are corrected, the AOS efficiency decreases a little 
bit. However, it remains higher than the efficiency of 
an AOS with the correction of only the average phase. 
For d = 2r0 the difference between these two versions 
of AOS becomes smaller than 10% at L/Ld > 1.  

Thus, the AOS with a segmented mirror, the size 
of whose elements is less than or equal to the coherence 
length r0, can ensure high quality of correction both for 
the case of weak and strong intensity fluctuations. The 
corresponding value of Strehl parameter is no less than 
0.5$0.8 depending on the IF level and the number of 
degrees of freedom of each element. The restrictions on 
the time lag introduced by an AOS do not become 
stricter. Therefore, the main problem is to construct the 
corresponding wave front sensor. 

 

5. Algorithm for reconstruction  
of the phase matrix 

 

Consider first the problem of phase reconstruction 
from known values of the phase difference (PhD) 
between the subapertures. The sought value here is the 
phase assigned to every subaperture as a whole, for 
example, the phase of the mean complex amplitude 
(11).  

The problem of reconstructing the phase matrix 
has been intensively discussed in the literature.14$17  
In the majority of papers dealing with this problem, 
algorithms minimizing the influence of measurement 
errors by the method of least squares have been 
considered with a slightly varying problem geometry. 
In those considerations, it has been proposed that with 
no errors the sum of initial PhDs over any closed path 
is zero. 

This assumption is clearly invalid in the presence 
of spiral dislocations of the phase. If the point of 
dislocation is inside a closed path, then the sum of 
PhDs is equal to 2π and the standard method of least 
squares gives wrong solution even in the absence of 
measurement errors in the PhD. Therefore, application 
of the corresponding algorithms of phase reconstruction 
is restricted to the region of weak IFs. 

This restriction has been removed in Ref. 12, 
where it was proposed to modify the initial array of 
PhDs by adding 2π×(integer number) to elements of 
this array so that the absolute value of the PhD sum 
over any minimal path equals zero with no 
measurement errors and does not exceed π in the 
presence of some errors. If the problem is formulated on 
a uniform square grid with the size N×N, then 
implementation of the corresponding algorithm of phase 
reconstruction with the use of the discrete Fourier 
transform creates no problems. 13 According to Refs. 12 
and 13, we refer to the usual formulation of the 
problem of phase reconstruction by the method of least 
squares (unmodified) as a normal equation (NE), while 
the modification proposed in Refs. 12 and 13 is referred 
to as a modified normal equation (MNE). 

We have implemented the algorithms for solution 
of NE and MNE in such a way that the sought phase 
matrix ϕi,j, i, j = 1, 2, ..., N was calculated from two 

arrays of estimates Δ
x

i,j and Δ
y

i,j, each having the size  

N×(N $ 1). To check the algorithm and the program 
implementing it, true PhD values found in the 
numerical experiment from the known complex 

amplitude were substituted to the arrays Δ
x

i,j and Δ
y

i,j .  

This substitution gave just the same value of the SR 
parameter as the above-considered simulation of the 
AOS with a segmented mirror. 

 

6. Measurement of the phase difference 
 

Today's wave front sensors capable of operating in 
real time under conditions of atmospheric turbulence 
are the sensors of local tilt. Among them there are 
modifications of Hartmann sensor and shear 
interferometers. In both cases, the output signal from 
every element of a sensor is proportional to the 
weighted mean gradient of the phase at its subaperture, 
and the weight is equal to the intensity of incident 
optical wave: 

 g = 
1
P
 ⌡⌠ d2 ρ I(ρ) ∇ϕ(ρ) (14) 

(in the shear interferometer, the instrumental weight 
function is added18). The phase difference between the 
subaperture edges is calculated as a product of the 
output signal by the subaperture size: 

 Δ
x = gx d,   Δy = gy d. (15) 

If a corrector with the same configuration and 
same size of elements is used in combination with 
Hartmann sensor, then measurement  errors in the 
phase differences can be decreased by using two 

Hartmann sensors $ one for each of the PhD arrays Δ
x

i,j 

and Δ
y

i,j. In our numerical experiments, the results of 

which are presented below, three sensors of the local 
tilts  were used:  

$ sensor I (to measure Δ
x

i,j ) of (N $ 1)N  size, 

shifted along the coordinate x by d/2 relative to the 
corrector elements; 

$ sensor II (to measure Δ
y

i,j ) of N(N $ 1) size, 

shifted along the coordinate y by d/2 relative to the 
corrector elements; 

$ sensor III (unshifted, of N×N size) to control 
tilts of the corrector elements. 

The values of ϕi,j calculated from PhD arrays of 
the first two sensors are used to control shifts of the 
corrector elements, while the values of gi,j from the 
third sensor are used to control tilts of the elements. 
Maybe such a configuration is not optimal, but in the 
limiting capabilities it is very close to optimum. 
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7. Results of simulation of an AOS  
with a sensor of local tilts 

 
The above-described scheme of the AOS with 

three sensors of local tilts has been used in numerical 
experiments on the efficiency of compensation for 
turbulent blurring of an image. Local tilts were 
calculated by the following equations: 
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where the integral is taken over a subaperture with the 
size d. The derivatives with respect to x and y were 
found by multiplying the discrete Fourier transforms of 
the real and imaginary parts of the complex amplitude 
by the corresponding filtering function. 

The phase correction at the i, jth corrector 
element was set in the following way: 

 ϕi,j + gx x + gy y, (16) 

where gx and gy are local tilts measured with sensor 
III, and ϕij is the phase matrix obtained by solving 
MNE with the PhD arrays from sensors I and II. 

All calculations have been performed for 
D/r0 = 10 and for D/d = 10. Thus, the size of the 
subaperture of a sensor and corrector was equal to 
Fried length r0. 

Figure 4 shows the dependence of Strehl parameter 

on the scaled path length L/kr
2
0 for the following 

versions of the numerical experiment: solution of NE at 
d → 0 (curve 1); solution of NE at d = r0 (curve 2); 
solution of MNE at d = r0 (curve 3). 

 

 

 

 
 

Fig. 4. The SR parameter as a function of the scaled path 

length L/kr
2

0 for different versions of the sensor. 

In the considered numerical experiment, the 
condition d → 0 means that the size of the element is 
equal to the distance between nodes of the computational 
grid, and the phase differences are determined directly 
from the values of the complex amplitude without 
calculation of the local tilts. 

The presented dependence SR(L/Ld) indicates that 
the efficiency of correction rapidly degrades in the region 
of strong fluctuations (β0 > 1) when using NE. It also 
turned out that the AOS operation efficiency degrades 
even somewhat faster when using MNE. The decrease of 
the size of an element d also does not result in an 
increase of the SR parameter. Therefore, we should 
accept that an AOS with the sensor of local tilts  is 
impracticable under conditions of strong IFs even with 
the use of the algorithm for phase reconstruction (the 
algorithm has been specially constructed for 
reconstructing the phase matrix in the presence of 
spiral dislocations). 

To reveal the cause of this failure, we have 
studied the dependence of the variance of error in 
estimation of the phase difference on the normalized 
path length. The error for the i,jth subaperture of the 
sensor was calculated in the following way: 

 ( )εi j i j i j x i jU U g d, , ,
*

,arg arg ,= − − ⋅
+1  (17) 

where the overbar denotes averaging over the 
subaperture of sensor III. This subaperture coincides 
with the area of the corrector element. In Eq. (17) gx 
is the weighted-mean gradient of the phase at the 
corresponding subaperture of sensor I. The value of the 
error εij was reduced to the range ($ π,π]. The variance 
of the error was estimated by averaging over all 
subapertures and 10 random realizations. 

Figure 5 illustrates the growing variance of tip-tilt 
correction error with the increasing ratio L/Ld, which 
characterizes the IF variance. It is seen that the 
variance of the error increases rather fast, what is the 
explanation of the decrease in the efficiency of the AOS 
with a sensor of local tilts. 

 

 
 

Fig. 5. The variance of tip-tilt correction error vs. the scaled 
path length. 
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To achieve a gain from the use of MNE, one needs 
to have a sensor capable of measuring the phase 
difference more accurately under conditions of strong 
intensity fluctuations. In principle, the phase difference 
can be estimated from the position of the interference 
fringe resulting from interaction of fields coming from 
neighboring subapertures of an AOS. However, it may 
prove rather hard to perform such measurements in real 
time under conditions of atmospheric turbulence. 

Let us make some remarks about the scaled 
aperture diameter D/r0. The results presented have 
been obtained at a fixed value D/r0 = 10. Preliminary 
calculations for D/r0 >10 have shown that as the AOS 
efficiency decreases, the SR parameter decreases 
somewhat faster and tends to its value in the system 
without an adaptive correction. The larger the scaled 
diameter D/r0, the smaller the latter value. 

 

8. Conclusions 
 

Thus, the efficiency of phase compensation for 
turbulent blurring of an image has been studied for the 
case of strong IFs. The calculations have shown that 
the critical point of an AOS construction is the sensor 
of wave front distortions. The use of a segmented 
mirror gives practically the same values of Strehl 
parameter (SR ≅ 0.5 at d = r0) for both weak and 
strong IFs, when correcting only the average phase. 
When correcting both the average phase and the local 
tilts, the efficiency of AOS operation becomes 
somewhat lower in the region of strong IFs. However, 
it remains higher than for an AOS with correction of 
only the average phase. Both versions of the AOS have 
nearly the same efficiency at long path lengths L/Ld. 
Therefore, when designing an AOS for operation under 
conditions of strong IFs, correction of local tilts can be 
rejected. Thus, the AOS design becomes much simpler. 

The situation with the sensor of wave front 
distortions is just similar. Measurements of local tilts 
become impractical under conditions of strong intensity 
fluctuations, because the correlation between the local 
tilt and the phase difference becomes weaker with 
increasing IFs. To extend the AOS application to the 
region of strong IFs, the sensor should be constructed 
following the principle of direct measurement of the 
phase difference. Besides, the modified normal equation 
should be used for solution of the problem on phase 
reconstruction. 

Dynamic characteristics of an AOS have been 
considered using, as an example, the correction with a 
constant time lag, all other factors being neglected. The 
calculations have shown that influence of a constant time 
lag on the AOS efficiency is independent of the level of 
IFs. The combination of time lag correction with other 
factors can possibly give a more complex pattern. 

Spectral characteristics of the adaptive correction 
remained beyond the scope of this paper. Under 
conditions of strong intensity fluctuations, the AOS is 
most likely very sensitive to the difference between 
wavelengths of a reference beam and the beam to be 
corrected, because scaling of phase correction from one 
wavelength to another under conditions of broken phase 
continuity is rather problematic. 
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