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We discuss here some peculiarities in the evolution of stimulated scattering in transparent liquid 
particles under the action of ponderomotive force induced by the light field. Strong deformations within 
the so-called Descartes ring are noticed that exceed deformations on the rest surface of a particle by an 
order of magnitude. The evolution dynamics of droplet deformations suggests that just these deformations 
are the main cause of the experimentally observed break of stimulated scattering. An analytical 
expression has been derived for the Q-factor of resonance eigenmodes caused by slight deviations of a 
droplet shape from a sphere. It is shown that a higher Q-factor experiences a stronger influence of the 
surface deformations. 

 

Introduction 
 

In recent years the interest in studies of the 
nonlinear effects of stimulated scattering (SRS, SBS, 
stimulated fluorescence) in microparticles has strongly 
increased.  This is caused by a unique property of the 
dielectric spheres to accumulate and transfer the light 
wave energy. This property opens up wide possibilities 

for practical application of microparticles as independent 
optical devices in high-resolution spectroscopy,1 optical 
communication,2 remote analysis of chemical properties 
and microphysical parameters of aerosol.3 

As known, the basic circumstance for stimulated 
scattering effects to occur in spherical microparticles is 
electromagnetic oscillation modes with a high Q-factor. 
Such modes are excited at certain values of the 
diffraction parameter x = k0 =0 (where =0 is the particle 
radius, k0 is the absolute value of the wave vector of a 
light wave in vacuum).4  A transparent particle can 
actually be considered as an open spherical optical 
resonator having a set of resonance oscillation modes. 

Spontaneous Raman scattering radiation generated 
at inelastic scattering of a pump wave in a particle 
volume may, under certain conditions, be "locked" by 
one (or several) resonance mode and amplified. As a 
result, a wave of stimulated scattering  is formed in the 
spherical particle. The electromagnetic field of this 
wave is mostly concentrated in a thin layer near the 
particle surface.5 From the viewpoint of wave optics, 
this field can be treated as a standing wave resulting 
from interference of two inelastically scattered waves, 
which are phase-matched and propagate from the opposite 

directions along the particle surface. Radiation loss of 
these waves through the particle surface gives rise to a 
particle glow at its edge. A frequency spectrum of this 
glow has a characteristic "peaked" structure, that reflects 
spectral positions of eigenmodes.3,5 

At the same time, recent experimental investigations 
into the stimulated light scattering in liquid particles 
have revealed some peculiarities in the angular 
structure of the stimulated scattering flux.6$11 In 

particular, it has been noted that the traditionally 
observed glow of the particle edge is accompanied by 
an intense glow at Raman frequencies from a ring area 
on the shadowed side of a particle. In Ref. 8 this zone 
has been called a Descartes ring (DR). 

To explain this extra emission, Srivastava and 

Jamrzembski (Ref. 7) have put forward a hypothesis 
which implies that, in contrast to Raman emission due 
to tangential loss of the Stokes wave being in 
resonance, emission from DR is caused by high 
intensity of the inner pump field in this area, because 
the incident wave in DR is focused by the front surface 
of a spherical particle onto the shadowed hemisphere. 
Consequently, since the Raman scattering from DR is 
not related to particle’s resonance properties, the 
spectral diagram of radiation from the ring area must 
be similar to that of stimulated scattering in a solid 
medium. As known, the latter is characterized by the 
absence of a peaked structure.12 

However, further experimental studies8$10 have 
shown that the spectral, temporal, and threshold 
characteristics of stimulated emission from the DR area 
have the same peculiarities as the radiation from the 
droplet edge. The authors of these papers have assumed 
that additional emission from the ring zone is caused by 
light scattering at nonlinear disturbances of the 
medium, which are caused by pump radiation in the 
areas of the maximum inner field.9 These may be either 
processes leading to light-induced change of the 
refractive index of the particle’s matter (Kerr effect, 
electrostriction) or surface distortions of a liquid 
particle induced by ponderomotive forces of the light 
field.10  In our opinion, the latter mechanism is more 
probable, since up to date the scientific literature 
present no evidence on DR in solid spherical particles, 
which have a solid boundary. Thus, we can assume the 
following mechanism. The pump field induces strong 
deformations of the spherical surface in the DR zone. 
Electromagnetic waves of the resonance mode undergo 
scattering when incident on the drop portion distorted 
by the shape oscillations due to deformations. Thus the 
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appearance of an extra source of emission from a 
droplet may be explained.  The presence of this 
emission indicates that deformations worsen resonance 
properties of a liquid particle, namely, decrease its  
Q-factor at the frequency of stimulated scattering. 

This paper presents a study of changes in the 
radiation Q-factor of natural electromagnetic 
oscillations of a liquid particle due to surface 
deformations in the DR zone. This effect is estimated 
numerically based on calculations of ponderomotive 
oscillations of droplets in the field of an intense 
radiation.  The results obtained have allowed 
interpretation of the experimental findings of Ref. 11 to 
be done. These data are interesting, in our opinion, 
since they imply a possibility of decreasing the power 
threshold of SRS in transparent droplets exposed to a 
wave train of picosecond laser pulses in the presence of 
ponderomotive effect of radiation upon the droplet 
surface. 

 

Theory of formation  
of the Descartes ring 

 

Rays, having experienced one refraction at the 
illuminated hemisphere of a spherical particle, form the 
area on its shadow side. The boundary of this area is 
called the Descartes ring.8 The position of DR with 
respect to the principal cross section of a spherical 
particle illuminated by a plane electromagnetic wave 
can be found from considerations of geometrical optics. 
The geometry of DR formation is illustrated in Fig. 1, 
which shows the cross section of a spherical particle in 
the incidence plane of a light wave. The plane wave is 
incident on a water droplet along the direction of the z-
axis. The angle ϕi is the impact parameter 
(0 ≤ ϕi ≤ π/2). It determines the position of the ray 
entrance point on the sphere as seen from its center. The 

angular position θi of the point of secondary refraction of 
the ith ray on the shadow side of the droplet is uniquely 
related to the angle ϕi by the Snell law: 

 θi = 2arcsin [(n1/n2) sinϕi] $ ϕi, (1) 

where n1 and n2 are the refractive indices of the 
ambient medium and the particle matter, respectively. 
Figure 2 shows the dependence θi(ϕi) for different 
refractive indices of a droplet matter. 
 

 
 

Fig. 1. Geometry of rays inside a spherical dielectric particle: 
the angular position, with respect to particle center, of the ith 
incident ray or the impact parameter (ϕi); the angular position 
of the second refraction of the ith ray (θi). 
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Fig. 2. The angular position of the secondary refraction point 
θi vs. impact parameter ϕi for particles with different 
refractive index n2. The points show critical angles. 
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The value of θ 

Desc
i  determines the critical angular size 

of DR on the shadow surface of the particle for rays, 
which have experienced one refraction.  

As seen from Eq. (2), the angle θ 

Desc
i  is 

completely determined by the ratio of the refractive 
indices n2/n1. At n2/n1 ≥ 2 the ring disappears. 

The considerations based on the rigorous solution of 
the problem of a plane electromagnetic wave scattering 
on the sphere (Mie theory) give similar results. Figure 3 
shows the numerically calculated distribution of the 
relative surface intensity of a light field B(r, θ, ϕ) in 
the DR zone for droplets of different liquids with radius 

=0 = 40 μm, where 

 B(r, θ, ϕ) = [E(r, θ, ϕ) E*(r, θ, ϕ)]/E0
2; 

E0 and E are the strength of electric fields of incident 
wave and the wave inside the particle; r, θ, and ϕ are 
the spherical coordinates. It is seen from Fig. 3 that the 
maxima of surface intensity of the light field, for 
example, for water are observed, on the shadow 
hemisphere of the droplet, at the points shifted by 
about 20° from the principal axis. They form a ring 
with the position coinciding with that obtained within 
the geometric optics approximation. For liquid particles 
with higher refractive index (benzene, CS2) the 
position of the ring also coincides with that predicted 
by geometric optics. However, in this case, an 
additional maximum of the surface intensity is observed 
at the center of the shadow side of the droplet, in spite 
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of edge maxima. The amplitude of this maximum is 

practically equal to the amplitude observed in  the  ring  
zone  (benzene) or even exceeds it (CS2). 
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Fig. 3. Angular distribution of the relative surface intensity of 
a light field B near the center of the shadow hemisphere of a 
droplet (θ = 180°) for different droplet matter: water (1), 
benzene (2), CS2 (3). 
 

 

Ponderomotive deformations  
of the droplet surface in the zone  

of the Descartes ring 
 

The ponderomotive effect occurs in a liquid 
dielectric particle when it is exposed to high-intensity 
laser radiation. This effect causes appearance of a 
volume gradient of the liquid density (the striction 
effect), motion of the particle as a whole under the 
action of light pressure, as well as particle deformation 
due to surface forces. The latter physical mechanism is 
associated with a sharp change of the normal 
component of the electric field strength at the "liquid$
ambient medium" interface. It is just this effect that 
makes up the subject of our further considerations. 

The statement of the problem on deformation of a 
liquid droplet in a light field traditionally involves the 
equations of viscous incompressible liquid, as well as 
the kinematic and dynamic conditions on a free 
surface.13,14 The former condition relates the 
deformation vector and the liquid flow velocity, while 
the latter one presents the strength balance on the 
particle surface: 
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where v, p, ρ, and η are the velocity, pressure, density, 
and dynamic viscosity of the liquid, respectively ; ε2 is 
the liquid dielectric constant; pa is the outer 
(atmospheric) pressure; α is the surface tension 
coefficient of the liquid; R1 and R2 are the principal 
radii of curvature  of the surface; n is the unit vector of 

the normal to the droplet surface; ni,k is its projection 
onto the xi,k coordinate axes; 

 f = (ε2 $ 1) [(ε2 $ 1) (En)2 + E2]/8π  (4) 

is the change of the normal component of 
electromagnetic field strength on the liquid surface.15 
Only low-frequency (with respect to the frequency of 
exciting radiation) terms should be taken into account 
in Eqs. (3) and (4). 

To derive the equation for oscillations of a liquid 
particle, let us use the approach developed in Ref. 16. 
This approach is based on the integral form of the law of 
energy conservation as applied to the liquid in a deformed 
particle. As known, change in the kinetic energy of a 
liquid in the field of body forces is described by the 
expression13,14: 
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where σik is the viscous stress tensor; V is the volume; S 
is the distorted surface of the liquid; dS = n dS; fE is the 
volume density of ponderomotive forces.15 

In what follows, we use the approximation of 
small deformations of the droplet surface and low 
viscosity of the liquid. The condition of small 
deformations means that | ξ | / | r0 | = | r $ r0 | / | r0 | << 1, 
where r0 is the vector of a point on the undistorted 
droplet surface; ξ is the surface displacement vector. In 
the approximation of low viscosity, the flow inside the 
droplet can be considered potential (∇ × v = 0). The 
only exception is the boundary layer with the thickness 

lb ∼ =0 (Re)$1/2, where Re is Reynolds number. 13 
When used together, these approximations guarantee 
correct calculation of the surface integral in Eq. (5). 

The amplitude  of the particle surface deformation 
can be written as a series in terms of spherical 

harmonics (r/=0)
l
 Yln(θ, ϕ): 

 ξ(r, θ, ϕ) = ∑
ln

 ξln (r/=0)
l Yln(θ, ϕ), 

where Yln(θ, ϕ) is the spherical harmonic. Thus, within 
the scope of the assumptions accepted and with regard 
for the boundary condition (3), we have from Eq. (5) 
that 
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 tl = 
=0

2

2ν (2l + 1) (l $ 1)
  

is the characteristic time of oscillation damping due to 
viscosity;  

 Ωl = l(l $ 1) (l + 2) α/(ρ=3
0)  

is the natural (Rayleigh) frequency of hydrodynamic 
oscillations of the droplet; ν = η/ρ is the kinematic 
viscosity of the liquid. 

Given known form of the function f(r, t), Eq. (6) 
can be solved by use of standard procedures of numerical 
differentiation. 

Figure 4 shows the surface shape for droplets of 
different liquids at a fixed time. The shape is distorted 
by ponderomotive deformations. The relative amplitude 
of deformations ξ/a0 is shown in Fig. 5 as a function 
of the polar angle θ. The calculations have been 
performed with the following initial parameters: the 
particle is exposed to a pulsed laser radiation with 
pulse peak intensity I0 = 0.1 GW/cm2, pulse duration 
tp = 100 ps, and the pulse sequence period τ = 13.2 ns, 
at the wavelength λ = 0.532 μm. These parameters 
correspond to the data from Ref. 10. The shape of 
surface deformations is shown at the time, when the 
second laser pulse in the train begins to act upon the 
particle, that is, 13.2 ns after the beginning of the 
interaction. 
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Fig. 4. The shape of the distorted surface of droplets of 
different liquids (the radiation is incident from right to the 
left). Deformations are shown schematically on a larger scale. 

 

Strong deformations in the DR zone are clearly 
seen for a water droplet at the angles θ ≈ 160 and 200°. 
This coincides with the DR position for the parameter 
n2/n1 = 1.33 (see Fig. 3) and corresponds to the 
angular displacement of ∼ 20° from the principal axis. 
The amplitude of deformations in this area is an order 

of magnitude larger than displacements in the rest of 
the droplet surface. 

For the benzene particle (n2 ≈ 1.5), the area of 
deformations is a single convexity in the direction of 
the principal axis, rather than a ring. The height of this 
convexity exceeds the amplitude of deformations on the 
rest of the particle surface by more than 20 times. The 
explanation is as follows. The maximum of the 
electromagnetic field at the shadow side of the benzene 
droplet is closer to the center as compared to water 
droplets. The size of the zone of maximum light field 
intensity is about 10° in this case, and DR degenerates 
into a spot because of the  higher light intensity in this 
area (see Fig. 3). Similar regularity in the spatial 
pattern of stimulated scattering emission has also been 
noticed in Ref. 10. Chen et al.10 reported about 
additional emission from the point area on the shadow 
side of a droplet for liquid particles of CS2 with the 
refractive index exceeding that of water.  

 

0 45 90 135 180 225 270 315

0

8⋅10$5

ξ/a0

θ°

0 45 90 135 180 225 270 315

0

4⋅10$5

4⋅10$5

$ 4⋅10$5

ξ/a0

θ°

a

b  
 

Fig. 5. The relative amplitude of surface deformations caused 
by the ponderomotive forces for the droplet with radius 
a0 = 40 μm vs. polar angle θ: benzene (=), water (b). 

 

Experimental research into the action of a series of 
short laser pulses (tp = 100 ps) on transparent droplets 
has also revealed some interesting peculiarities in the 
temporal structure of SRS signals.11 It was found that 
at such a sequence of exciting pulses it is possible to 
decrease the energy threshold of SRS. An individual 
radiation pulse in a train does not give rise to SRS 
signal. At the same time, on passage of some number of 
laser pulses, stimulated Raman scattering from liquid 
particles occurs. Besides, the SRS has been observed 
only in a certain time interval. It was found that the 
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length of this interval depends on the pump pulse 
intensity. This dependence is illustrated in Fig. 6, 
where the irradiation intensity is shown in percent of 
some threshold intensity I0 = 30 GW/cm2. By the 
threshold intensity in Ref. 11 is meant the peak 
intensity of a pump pulse, when a single pulse is 
sufficient for generating the SRS. Open circles in Fig. 6 
are for the time, when SRS signal occurs in droplets. 
The squares are for the time, when emission at the SRS 
frequency from particles terminates. Curves in Fig. 6 
show the time zone, within which laser pump pulses 
lead to SRS generation in droplets. 
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Fig. 6. Time of start and termination of the SRS signal 
generation in ethanol droplets as a function of the relative 
peak intensity of a pump pulse I/I0 ⋅ 100%. The experimental 
data have been borrowed from Ref. 11. Open circles 
correspond to the start of SRS signal generation; squares 
correspond to the termination of SRS signal generation. 
Curves 1 and 2 are the borders of the time zone, within which 
the SRS generation occurs. 

 

In our opinion, this time zone is most likely caused 
by local deformations of the particle surface. The 
deformations are induced by the ponderomotive forces in 
the areas of maximum light field on the particle surface 
(DR zone). As shown above, these deformations lead to 
distortions of the spherical surface of a droplet and 
formation of peaks and dips on it. These peaks and dips 
are responsible for a peculiar kind of selection among the  
resonance electromagnetic modes, which sustain the 
process of stimulated scattering. In an ideal sphere the 
oscillations with higher Q-factor apparently dominate 
in the competition between the resonance modes, all 
other factors being the same. Since typical values of the 
radiation Q-factor for large dielectric spheres (with the 
diffraction parameter x > 100) are on the order of 
QR ≥ 1010 (see, for example, Ref. 17), the effective Q-
factor for natural oscillations is completely determined 
by the absorption losses in a liquid QA: 
1/Q = 1/QA + 1/QR. Therefore, if the pump pulse 
length tp is shorter than the characteristic locking time 
of SRS radiation in the resonator τR (τR ∼ 1/QR), then 
the radiation of this mode practically cannot leave the 
droplet and is completely absorbed. 

The situation is quite different for the case of 
surface deformations of a liquid particle. In this case, 
modes, for which the Q-factor is lower, while being 
more stable to deformations of the resonator surface 
have an advantage, because the electromagnetic field of 
this modes is concentrated farther from the surface.4 
Because radiation loss of these modes is higher, the 
most part of radiation leaves the particle, and the 
particle starts to glow. However, as the process  
of droplet deformation evolves, the spatial structure  
of resonance modes becomes so distorted that they are 
incapable of sustaining the nonlinear scattering process.  
As a result, some time later the generation terminates. 

This theoretical model of light-induced 
deformations of a liquid particle has provided the basis 
for our numerical experiments. In this experiments we 
have related the SRS time zone shown in Fig. 6 to the 
corresponding amplitudes of deformation of the droplet 
surface in the DR area. The calculated results are 
shown in Fig. 7. Two curves mark the amplitude range 
of particle deformations, within which the SRS 
generation occurs. As seen from the figure, the 
amplitude of surface deformations increases by an order 
of magnitude during the time of SRS existence. This 
amplitude far exceeds the level of natural 
thermocapillary oscillations of the droplet (dashed line 
in Fig. 7). The characteristic amplitude of the latter 
oscillations can be presented as18:  

 ⎜ξt.c.⎜= kB Š/(4πα),  

where kB is the Boltzmann constant; Š is the 
temperature of the particle. 
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Fig. 7. Numerically calculated dependence of the relative 
amplitude of ponderomotive deformations of an ethanol 
droplet (a0 = 40 μm) on the relative peak intensity of the 
pump pulse: beginning of the SRS generation (curve 1); 
termination of the SRS generation (curve 2). The data for 
calculations have been taken from Fig. 6. The dashed straight 
line is for the rms amplitude of the thermocapillary 
oscillations of the liquid. 

 

Thus, the results presented allow the following 
conclusions to be drawn. In the DR area there occur 
sharp deformations of the surface of a transparent 
droplet. These deformations are caused by the action of 
ponderomotive forces in a high-intensity light field. At 
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the refractive index n2 = 1.33 (water) and n2 = 1.36 
(ethanol), the area of deformations has a ring shape. 
For liquid droplets with higher refractive index 
n2 > 1.4 (benzene, CS2) the ring takes the form of a 
spot at the center of the shadow surface of a droplet. 
The amplitude of these deformations exceeds the 
amplitude of deformations on the rest surface of the 
particle by more than an order of magnitude. 
Consequently, these deformations can cause additional 
emission of SRS radiation from the DR area. 

 

Influence of the surface deformations  
of a liquid droplet on the Q-factor  

of the resonance natural modes 
 

To estimate the influence of surface deformations 
of droplets on the Q-factor of the resonance modes, we 
proceed from the traditional concept of the resonance 
mode as a standing wave, whose field is localized 
mostly in the plane passing through the center of the 
sphere being inclined at an angle θlm to the z-axis 
(Fig. 8) (Ref. 5). This angle is determined by the ratio 
of the azimuth index of the resonance mode m to its 
number l: θlm = arccos(m/l). Since the index m varies 
within the range (l; $l), the plane of a circle, where 
the mode field is mostly localized, lies at the polar 
angles θ = 0 $ π/2. 

 

 
 
Fig. 8. The field of the resonance mode with the azimuth 
index m. The electromagnetic field is localized in the ring zone 
inclined at the angle θlm relative to the equator. 

 
A standing wave is formed by traveling waves that 

arrive at the initial point with the phases multiple of 
2π. That means that the condition of phase matching 
must hold: k=0 = l, where k is the wave number inside 
a droplet. Consequently, to keep the phase matching, 
any surface deformations, which change the traveling 
wave path length by δL, should be compensated for by 
the corresponding change in the absolute value of the 
wave vector δk: δL/L0 = δk/k, where L0 = 2π=0 is the 
geometrical length of the wave travel path in an ideal 
sphere. 

For the length increment we can obtain 

 δL ≅ 
2π=0

π $ 2θlm

 ⌡⌠
θlm

π$θlm

  ξ(θ)dθ = 

 = ξA 
2π=0

π $ 2θlm

 ⌡⌠
θlm

π$θlm

  ξ$(θ)dθ, 

where ξA is the amplitude of surface deformations, ξ$ = 
= ξ(θ)/ξA. 

In the first approximation (ξA << 1), we can 
consider the shape of the deformed principal cross 
section of a particle as a circle with some effective 
radius =e depending on the amplitude and angular 
structure of the deformations: 

 =e = (L0 + δL) = =0 (1 + ξAqlm). 

Here qlm = 
1

π $ 2θlm

 ⌡⌠
θlm

π$θlm

  ξ$(θ)dθ is the transformation 

coefficient (obviously, ⏐qlm⏐ ≤ 1). Then, for the change 
in the diffraction parameter of the effective sphere δx 
for the TE(TM)lm mode, we have the following 
expression: 

 δx = xe $ x0 = 
δk
n2

 a0 = x0 ξA qlm, (7) 

where x0 is the resonance value of the diffraction 
parameter of the undistorted sphere, xe = k0ae. 

The dependence of qlm on m/l in liquid particles 
deformed in accordance with Fig. 5 is shown in Fig. 9. 
It is seen that the values of qlm vary within 10$3 $ 10$2 
and reach maximum for the modes lying in the plane of 
the droplet equator (m = l). 

As calculations show, the shape of the resonance 
curve of the particle natural modes is close to the 
Lorentzian profile. 19 Therefore, in the immediate 
vicinity of some resonance, we can introduce the so-
called Q-factor function: 

 QD(x0) = Q0/[1 + (xe $ x0)
2/Δx

2], 

where Q0 is the Q-factor of some resonance mode of an 
undistorted sphere (the mode indices are omitted for 
simplicity); Δx is the half-width of the resonance curve. 
The value of this function at xe = x0 obviously 
coincides with the resonance Q-factor. By making use 
of Eq. (7) and taking into account that Q0 = x0/Δx, 
we have 

 QD(x0) = Q0/[1 + (qlm ξ Q0)
2]. (8) 

Figure 10 shows the dependence of QD on Q0 for 
different values of the surface deformations ξA. The 
values are taken from Fig. 7. The value of the 
coefficient qlm was set parametrically in the range 
⏐qlm⏐ ∼ 10$3$10$1. As follows from this figure, the 
higher Q0 value, the stronger the effect of deformations 
on the Q-factor of the resonance modes.  
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Fig. 9. The transformation coefficient qlm as a function of the 
parameter m/l for the droplet deformations as in Fig. 5: water 
(curve 1), CS2 (curve 2). 
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Fig. 10. Q-factor of the deformed droplet QD as a function of 
the Q-factor of an ideal sphere Q0 at different values of the 
parameter qlmξ/a0: 10$1 (1); 10$2 (2); 10$3 (3). 
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Fig. 11. Q-factor of the deformed ethanol droplets vs. relative 
peak intensity of a pump pulse according to the results of 
numerical experiment (the initial data were borrowed from 
Ref. 11): beginning of the SRS generation (1); termination of 
the SRS generation (2); the dashed straight line shows the 
limit for the Q-factor caused by the thermocapillary 
deformations. 

The results presented allow us to relate the values 
of ethanol droplet deformations (see Fig. 7) to the 
changes of the radiation Q-factor at different peak 
intensity of a pulse of incident radiation. The changes 
can be calculated by Eq. (8). The obtained dependence 
is shown in Fig. 11. It follows from this figure, that as 
the pump pulse intensity increases, the threshold value 
of the Q-factor, at which the SRS signal occurs, 
decreases by about a factor of three. At the same time, 
the boundary value of QD, which corresponds to the 
SRS termination, remains practically unchanged. In 
other words, resonance modes having the Q-factor 
below some threshold value QD ∼ 8 ⋅ 103 are incapable 
of sustaining the process of stimulated scattering no 
matter what is the intensity of the pump radiation. 

 

Conclusion 
 
In this paper we have considered some peculiarities 

in the evolution of the process of stimulated scattering 
in transparent liquid particles under the action of 
ponderomotive forces induced by the light field. 
Appearance of strong deformations in the DR area has 
been noticed. These deformations exceed deformations 
of the rest of the droplet surface by more than an order 
of magnitude. 

Studies of the evolution dynamics of droplet 
deformations have shown that these deformations can 
be considered as the main reason for break of the SRS 
generation, which has been observed in experiments. 
The analytical expression has been obtained to estimate 
a decrease in the Q-factor of natural resonance modes 
due to slight deviations of the particle shape from the 
sphere. It is shown that the higher Q-factors of the 
droplet’s resonance modes take place under stronger 
effect of the surface deformations. The level of pump 
intensity itself is the factor, which performs an 
effective selection among the resonance modes at their 
competition to sustain the process of stimulated 
scattering in transparent particles. 
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