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In this paper we discuss a feasibility to correct the distortions introduced by multiple scattering 
into lidar measurements of light backscattering matrices (LBSMs) of crystalline clouds.  The correction 
algorithm is based on one of symmetry properties of LBSM and peculiarities of polarization structure of 
light scattered multiply by significantly non-spherical particles.  These peculiarities are large degree of 
depolarization and its weak dependence both on the depth of light penetration into a cloud and on the 
feild-of-view angle of a lidar receiving antenna. 

 

1. A consideration of higher degrees of multiplicity 
is a pressing problem when interpreting the results of 
laser sensing of such media as low-level clouds.  
However, it is not a challenge in case of  crystalline 
clouds due to their low optical density.  Nevertheless, 
because of large distance between these clouds and the 
Earth's surface, the cross size of a cloud layer falling 
within the field of view of a ground-based lidar may be 
comparable with mean free path of a photon.  The  
multiple scattering in this case cannot be completely 
neglected, because an interpretation of lidar returns in 

terms of single-scattering approximation implies a 
distortion of results of the sensing. The above-said is 
especially true for sensing of crystalline clouds from 
space, because in this case the distance between the lidar 
and a cloud may achieve hundreds kilometers. These 

circumstances stimulate development of methods, which 
take into account the multiple scattering in polarization 
laser sensing of crystalline clouds.  As will be seen below, 
this problem proves to be somewhat simpler than that for 
droplet clouds because of different mechanisms of 
formation of radiation polarization structure at scattering 
by spheres and significantly non-spherical particles. 

2. It is convenient to consider the qualitative 
difference between mechanisms of formation of a 
depolarized component at scattering by spherical and 
non-spherical particles within the double-scattering 
approximation, since  this approximation seems to be  
quite sufficient for ground-based lidar sensing.  
Analysis of trajectories and scattering volumes 
producing the double-scattered returns, which  come to 
lidar receiver at the time t = 2r/c, where r is the 
distance between laser radiation wave train and the 
lidar, can be found in Ref. 1. Further analysis allows us 
to see that the double-scattered radiation flux is mostly 
formed due to forward$backward and backward$
backward scattering at the moments following 
immediately after the laser radiation wave train enters 
the scattering medium.  Only as the laser radiation 
wave train penetrates deeper into the medium, the 
scattering volumes corresponding to other directions of 

the scattering become comparable and begin to exceed 
the volume of frustum of cone 

 V = 
1
3
 πθlas(r

2 $ R2
0) (r $ R0), (1) 

where 2θlas is the laser radiation divergence angle, and R0 
is the distance between the lidar and the boundary of 

the scattering medium. Forward$backward and 

backward$backward types of scattering dominate within 
this volume, because other processes are hardly probable 
due to small cross size of the volume.  As a consequence, 
the photons first scattered at the angles significantly 
differing from 0 or 180° leave the volume (1), so the 
second scattering event cannot occur in it. 

Note here the first difference between the 
scattering by spherical and non-spherical particles.  
The scattering matrices l(0) and l(π) of spherical 
particles at the scattering angles of 0 and 180° have 
the form of unit matrices multiplied by scalars. The 
product of matrices l(0)⋅l(π) has the same form. As 

a result, the radiation double-scattered in the 
forward$backward and backward$backward 
directions does not undergo the depolarization. The 
situation is quite different for the scattering by non-
spherical particles, where the depolarization does take 
place in the processes of this kind. 

To illustrate our statement, let us consider the 
scattering by a pair of axisymmetric particles. 

We refer to Fig. 1, which shows two particles on 
the z-axis, along which the laser radiation propagates.  
Both particles are axisymmetric with respect to the 
symmetry axes of an infinite order. The positions of 
particles' symmetry axes are characterized by the 
polar γ1, γ2 and azimuthal ϕ1, ϕ2 angles. The angles γ 
are measured from the z-axis, while the angles ϕ are 
measured from the plane XOZ (the plane P0) to the 
planes P1 and P2, on which the z-axis and the 
particles' symmetry axes lie. 

Elements of the scattering matrices l1(θ1, ϕ1, γ1) 
and l2(θ2, ϕ2, γ2) are functions of the scattering angles 
θ and the angles ϕ and γ defined above. 
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Fig. 1. 

 
Consider the process, when forward scattering by 

particle 1, θ1 = 0, and backward scattering by particle 2, 
θ2 = π, occur. Scattering matrices of axisymmetric 
particles are characterized by their dependence on four 
parameters.  They have a block-diagonal form if 
particle's symmetry axis lies in the scattering plane.2  
The scattering matrix of the first particle has the 
following form: 

 M1(0, 0, γ1) = 

⎝
⎜
⎛

⎠
⎟
⎞

A B 0 0

B A 0 0

0 0 C D

0 0 $D C

 , 

if the plane P1, in which the particle symmetry axis 
lies, is taken as a scattering plane. 

The scattering matrix l2(π, 0, γ2) has the same 
form, if the plane P2 is taken as the scattering plane.  
Its parameters are denoted respectively as a, b, c, and d. 
To describe the process of double scattering in the 
system of coordinates related to the reference plane P0, 
one should determine the matrices l1 and l2 with 
respect to this plane through transformations with the 
operators of the reference plane rotation 

 ℜ = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

1 0 0 0

0 cos 2ϕ sin 2ϕ 0

0 $sin 2ϕ cos 2ϕ 0

0 0 0 1

 ; 

M1(0, ϕ1, γ1) = ℜ($ϕ1) M1(0, 0, γ1) ℜ(ϕ1) ; 

M2(π, ϕ2, γ2) = ℜ(ϕ2) M2(0, 0, γ2) ℜ(ϕ2) . 

The Stokes vector of double-scattered radiation is 
proportional to the product of these matrices 

 S2 ∼ M2(π, ϕ2, γ2) M1(0, ϕ1, γ1) S0, 

where S0 is the Stokes vector of the incident radiation. 
In this expression, we omit spatial factors insignificant 
for our consideration.  The matrix elements 
l1(0, ϕ1, γ1) and l2(0, ϕ2, γ2) include, as co-factors, 

the trigonometric functions sin and cos with the 
arguments 2ϕ1 and 4ϕ1 and, correspondingly, 2ϕ2 and 
4ϕ2, except for rotation-invariant corner matrix 
elements.  The matrix elements 

 N = M2(0, ϕ2, γ2) ⋅ M1(0, ϕ1, γ1) 

are the polynomials, every term in which involves such 
products as sin nϕ1×cos mϕ2, sin nϕ1×sin mϕ2, etc., 
with n and m taking the values of 2 or 4.  Only 
diagonal elements of the matrix N contain terms free of 
such factors.  Therefore, when summing up the matrices 
N of a set of pairs of scatterers, whose symmetry axes 
are randomly oriented, the off-diagonal elements of the 
matrix of an ensemble vanish, and the matrix can be 
presented as: 

 
#
N  = 

#
A #a n , 

where elements of the normalized matrix n can be 
presented as: 

 n11 = 1, n22 = 
1
2
 (1$#c /#a ) = $ n33,     n44 = #c /#a  , 

 nij = 0,  if i ≠ j. 

The parameters 
#
A  and #a  have the meaning of 

coefficients of directed light scattering in the forward 
and backward directions, respectively; n44 is the 
normalized element of the backscattering matrix.  Here 
we have come to almost obvious result: at forward$
backward and backward$backward scattering, the 
polarization changes only in those scattering events, in 
which the wave vector of the scattered radiation is 
opposite to the wave vector of the incident one. At 
strictly forward scattering by axisymmetric particles 
without birefringence, the polarization does not change.  
As applied to real crystalline clouds, our experiments 
on measurement of backscattering matrices3 indicate 
that in the processes of forward$backward and 
backward$backward scattering the depolarization must 
be 0.3$0.4 for linearly polarized radiation and 0.6$0.7 
for circularly polarized one. 

As to our paper, it is important to emphasize that 
the depolarization of multiple-scattered radiation, when 
scattering by non-spherical particles, is non-zero near 
the medium boundary.  Just this is the first difference 
from the scattering by spherical particles. 

The second difference, which likely explains high 
depolarization noticed in Refs. 4 and 5, is different 
behavior of scattering phase functions at the angles 
close to 90°.  The point is that the values of normalized 
scattering phase functions for crystal particles at such 
scattering angles are about an order of magnitude larger 
than those for spherical particles of similar size.  This is 
indicated by both calculated (see, for example, Ref. 6) 
and experimental (Ref. 7) data.  In the vicinity of the 
medium boundary, as the laser train comes deep into 
the depth,  the scattering volume for scattering 
trajectories of the type θ1 = 90° and  θ2 = 90° (towards 
the lidar receiver) becomes comparable or larger than 
the volume of frustum of cone (1).  As a consequence, 
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these trajectories begin to play a significant part.  This 
does not take place at scattering by spheres, since the 
probability of the first scattering event at the angle 
θ1 = 90° is far less than at scattering by crystal 
particles.  Further analysis could show that 
depolarization of double-scattered radiation in the 
processes, when both scattering events occur at the 
angles of 90°, exceeds that for scattering at 0 and 180°.  
We also could explain the slight minimum of 
depolarization at some distance from the medium 
boundary at large (15 mrad) field-of-view angle of the 
receiving antenna (Ref. 5).  However, the limited 
volume of this paper induces us to consider few results 
calculated by the Monte Carlo method.4,5 

These results are significant for the algorithm 
taking into account multiple scattering in measurements 
of backscattering matrices.  (This algorithm is 
considered below.)  In Ref. 4, the calculations made for 
the crystalline cloud model have shown a fast growth 
of depolarization from ≈ 0.5 to 0.7$0.9 depending on 
the field-of-view angle and its  weak dependence  on 
the scattering coefficient and cloud structure. 

In Ref. 5, the calculations were made for 
ensembles of Chebyshev particles with different values 
of the deformation parameter ε.  At ε < 0.1 a particle 
looks like an elongated ellipsoid; at ε ≈ 0.2 it becomes 
a cylindric column with rounded ends and the diameter-
to-length ratio 1:1.5. Further increase of ε results in  
dumb-bell shape of the particle. 

The calculated results are descriptive of 
transformation of the depolarization profile.  As the 
deformation parameter increases, the depolarization 
profile characteristic of an ensemble of spherical 
particles gradually transforms to that typical for 
scattering by non-spherical particles. 

For ensembles of particles with the deformation 
parameter ε < 0.05, depolarization behaves much as in  
the case of scattering by spheres.  A gradual increase of 
depolarization is observed, as laser radiation penetrates 
deep into the medium.  However, in contrast to 
spheres, its initial level in this case is not zero.  It 
depends on the deformation parameter.  The rate of 
increase depends on the field-of-view angle.  The larger 
the angle, the faster the rate.  For particles with a 
radius of equivalent media ρe such that their diffraction 
parameter 2πρe/λ ≤ 6, this tendency keeps up to 
ε = 0.15.  However, the depolarization increases very 
fast and achieves its almost stationary value of 0.5  to 
0.6 already at the depth of laser wave train penetration 
into the medium of 25 m (τ = 0.5). Then it increases 
very slowly.  For larger particles with 2πρe/λ ≥ 12, the 
depolarization takes the value ∼ 0.8 already at ε = 0.08 
immediately near the medium boundary, and it is 
almost independent on both the depth of laser pulse 
penetration into the medium and the field-of-view 
angle. 

3. The proposed algorithm for taking into account 
the noise due to multiple scattering in polarization lidar 
measurements of LBSM is based on some idealization of 

the above-listed peculiarities of the polarization 
structure of lidar response to multiple scattering in 
ensembles of non-spherical particles. 

Let Stokes vector of the radiation coming to the 
receiver at the instant of time t = 2r/c be presented in 
the following form: 

 S(r) = S1(r) + ∑
i=2

n

 Si(r), 

where S1 and Si are Stokes vectors for the 
corresponding values of the scattering multiplicity. 

The contribution of multiple scattering is taken 
into account through the lidar equation8: 

 P(r) S(r) = 
1
2
 “ W0 Ar$2[M

π
(r) + 

 + D(r)] S0 exp{$2⌡⌠
0

r

 α(z) dz} ,  (2) 

where P(r) is the power of the scattered radiation, 
incident onto the receiving antenna at the time t = 2r/c; 
“ is the speed of light; S(r) and S0 are the Stokes vectors 
of scattered and incident radiation, respectively, 
normalized to the intensity; W0 is the energy of laser 
pulse; ` is the area of the receiving antenna; α(z) is 
the extinction coefficient; l

π
 is the backscattering 

matrix. The matrix D is defined as follows: 

 D(r) = D(r) 

⎝
⎜
⎛

⎠
⎟
⎞

1 0 0 0

0 δ 0 0

0 0 δ 0

0 0 0 δ

 . (3) 

Matrix (3) is the product of the scalar D(r), 
proportional to the intensity of the multiple-scattered 
radiation, and the matrix δ of the depolarizer, which 
partially depolarizes the radiation.  Definition (3) is a 
mathematical expression of the postulated idealization, 
according to which the state of polarization of the 
radiation multiple-scattered by non-spherical particles 
does not depend on the receiver’s field-of-view angle 
and the depth of laser radiation penetration into the 
medium.  This is the first ground for the proposed 
algorithm.  The second ground is the known symmetry 
property of backscattering matrices 

 M11 $ M22 $ M44 + M33 = 0 , (4) 

which follows from quite general property of the 
amplitude backscattering matrices `12 + `21 = 0 
keeping true for any LBSM.9 

The procedure of LBSM measurements3 is 
constructed so that the measured parameters are the 
Stokes parameters normalized to the intensity and, 
correspondingly, elements of the backscattering matrix 
l

π
 normalized to the element M11.  If the scattered 

radiation includes some portion of the  multiple 
scattering, then parameters are normalized to the total 
intensity.  That is, in spite of the matrix 
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 M
π
(r) = M11(r) m(r)  

(where mij = Mij/M11), which would take place with 
no multiple scattering according to Eq. (2), the matrix 

 M′(r) = M
π
(r) + D(r) = [M11(r) + D(r)] m′(r) , 

m ′11 = 1, m ′ii = (Mii + δ D)/(M11 + D) , i = 2, 3, 4 , (5) 

 m ′ij = Mij/(M11 + D) , i, j = 2, 3, 4 , i ≠ j , 

is determined.  Hereinafter we omit the dependence of 
l and D on r, because we always imply a pair of 
matrices corresponding the same distance r, and 
according to definition (3) δ does not depend on r.  
According to Eq. (4), for non-distorted backscattering 
matrix (4) the condition 

 1 $ m22 $ m44 + m33 = 0  (6) 

must be true.  For the matrix m′ this condition breaks 
down: 

 1 $ m ′22 $ m ′44 $ m ′33 = Δ , (7) 

where 

 Δ = D(1 $ δ)/(M11 + D) . 

Since m ′ii are the elements of the measured matrix, Δ is 
the experimentally found parameter.  With known Δ, 
from Eq. (7) we can find the ratio of the intensity of 
multiple-scattered radiation to that of single-scattered 
radiation 

 Im/I1 = D/M11 = Δ/(1 $ δ $ Δ). (8) 

Then we can re-normalize the matrix m′ in order to 
determine the backscattering matrix m, which is not 
distorted by multiple scattering. 

Having determined from the above equation 

 D = M11 Δ/(1 $ δ $ Δ)  

and substituting it into Eqs. (5), we derive 

 m11 = 1, 

 mij = m ′ij (1 $ δ)/(1 $ δ $ Δ) ,  i ≠ j , (9) 

 mii = m ′ii (1 $ δ) $ δ Δ/(1 $ δ $ Δ) , i = 2, 3, 4 . 

The parameters mij are elements of the normalized 
LBSM corrected for distortions introduced by multiple 
scattering.  We illustrate the above-said by an example.  
One measured LBSM had the following form: 

 m′ = 

⎝
⎜
⎛

⎠
⎟
⎞

1 $0.12 $0.01 0.01

$0.12 0.40 $0.02 0.10

0.01 0.02 $0.39 $0.20

0.01 0.10 0.20 $0.11

 . (10) 

The absolute measurement error is estimated as 
σ = ± 0.04. 
 

As seen, Δ = 0.32 according to Eq. (7).  This value 
is large, because, according to Eq. (8) and assuming 
δ = 0, the portion contributed by multiple scattering is 
47% of the single-scattering one. 

Below we present the result of correction of matrix 
(10) by Eqs. (9). It is assumed, that  δ = 0, what 
means the complete depolarization of multiple-scattered 
radiation: 

 m = 

⎝
⎜
⎛

⎠
⎟
⎞

1 $0.176 $0.015 0.015

$0.176 0.588 $0.029 0.147

0.015 0.029 $0.573 $0.294

0.015 0.147 0.294 $0.162

 . (11) 

It is easy to verify that the symmetry condition (6) 
holds true for this matrix. 

4. The proposed method of correction of 
experimental LBSMs is based on the fundamental 
symmetry property of these matrices.  Symmetry (6) 
can be violated only by multiple scattering, certainly, 
if it is not caused by experimental errors.  
Consequently, the violation of symmetry (7) can serve 
as a reliable indicator of presence of multiple 
scattering.  The second statement this method is based 
on is the independence of the degree of polarization of 
the multiple-scattered radiation on the field-of-view 
angle and the depth of laser pulse penetration into a 
cloud.  This statement is speculative, because it is some 
approximation, which requires a priori parameter δ 
(degree of polarization of multiple-scattered radiation) 
to be introduced.  From the data available we can 
assume that δ varies from 0 to 0.3.  Particular values of 
δ for different situations will likely be refined in 
further studies.  We can also assume that in some cases, 
for example, for a cloud consisting of small particles 
with size comparable with the radiation wavelength, 
the proposed method is incorrect for the cloud front, 
for which the condition δ(r) = const may be 
significantly violated.  However, a low value of the 
ratio Im/I1 (8) can be expected in this case, so the 
correction will not be needed. 

Note that the error due to multiple scattering has 
different effect on values of parameters of the scattering 
ensemble to be determined. On the one hand, the 
backscattering coefficient  without correction will be 
overestimated by the factor (1 $ δ)/(1 $ δ $ Δ).  In 
the above example, this gives overestimation by almost 
one and half times.  Consequently, correction of LBSM 
for multiple scattering can give significant gain in 
accuracy of determination of the backscattering 
coefficient.  On the other hand, the noise due to 
multiple scattering practically does not influence the 
accuracy in determination of dominant orientation of 
particle axes.  The angle of dominant orientation is 
determined from ratios of off-diagonal elements.2  At 
LBSM correction, the matrix elements are multiplied 
by the same factor, therefore their ratios do not change. 
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