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Operation of several types of spatial filters (SF) is analyzed from the viewpoint of unified 
principles of constructing images of a scattering volume and its transmission through a spatial filter of a 
lidar. Diaphragms of several shapes and rasters are considered as SF that define the angular field of view 
of a lidar receiving system. The main characteristics and efficiency criteria for SF are listed. The shape of 
matching and optimum diaphragms increasing the signal-to-noise ratio is determined. Diaphragms and 
rasters intended for controlled vignetting of the transmitted radiation flux within a given range are 
compared. Several types of lidar SF for isolating multiple scattering and other applications are also 
considered in the paper. 

 

1. Introduction 
 

Earlier, in Ref. 1, we have discussed a comparison 
among lidar receiving objectives of different types. The 
spatial filter (SF) is the second element of a receiving 
system. It effects the radiation flux directed to a lidar  
photodetector. The term œspatial filterB, as applied to 
lidar technique, refers to an element that forms the 
field of view of a receiving system in the space of 
objects (solid angle). B elow, by spatial filtration we 
understand the following: 1) isolation of the 
backscattered radiation flux (lidar return signal) 
having finite angular dimensions, against the 
background of spatially distributed radiation of noise 
sources; 2) separation of individual parts of the 
received radiation flux arriving at different angles;  
3) linear transformations of the intensity of this 
radiation with the elements of the receiving system. 

Mainly, diaphragms of several shapes are used as 
the SF.2 The diaphragms define the angular field of 
view of the receiving system. SF defines also the 
transmission coefficient of the receiving system, which 
depends on distance2$9 (i.e., the lidar geometrical 
factor), and restricts the dynamic range of a lidar 
return.10 B esides, SF permits one to analyze the 
energy structure of the received radiation flux and 
estimate the contribution of multiple scattering 
components to it.11$13 The input end of an optical 
wave guide transmitting the radiation flux from the 
receiving objective to the photodetector  can also be a 
part of an SF.13,14 The entrance slit of the spectral 
device is used as SF in Raman lidars.15 The next type 
of SF are rasters of various types (optical wedges,16 
mirrors,18 and vignetting diaphragms of some particular 
profiles2,18) which guarantee compensation for the 
inverse square range (z$2) fall off of return signal. 

In this paper, we generalize the results on spatial 
filtration of lidar signals and describe technical 
solutions used for these purposes. 

2. Intention and main characteristics of 
spatial filters of the lidar receiving 

systems 
 

SF of a lidar receiving system is intended for 
several purposes. First, it reduces the influence of 
background radiation noise on the operation of a 
photodetector. Second, its dimensions and position in 
the system define the range boundaries of lidar return 
reception. Third, the shape and transmission 
coefficient of a SF define the geometrical factor of 
the lidar, which is a function of distance g(z), what 
makes it possible to control the signal received from a 
given range interval. Fourth, the shape and position 
of a SF enables one to separate the components of the 
radiation flux that are caused by multiple scattering 
and polarization. 

The main SF characteristics that define the value 
of the radiation flux passing through the filter are as 
follows: 1) the shape and the area of its aperture;  
2) the function f(x, y) describing SF transmittance 
with respect to the axes of the filter’s coordinates;  
3) displacement in the position of the SF installation 
with respect to the focal plane of the objective z0;  
4) displacement of the SF center and other SF 
characteristics points with respect to the optical axis of 
the receiving system; 5) the limiting incidence angle u 
of a ray entering the SF. 

The shape and the area of the SF aperture, 
together with the focal distance of the objective fr 
define the angular field of view of the receiving 
system. The field is characterized by solid angle Ω 
which is not a cone in the general case (Fig. 1e). For 
a SF placed in the focal plane and having the shape of 
a round aperture with the diameter 2a, the solid angle 
is Ω = π(a/fr)2 where the full plane angle of the field 
is θr = 2a/fr. 
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The function f(x, y) has three main forms. For a 
simple pin hole, f(x, y) = 1 over the whole filter area 
(Fig. 1b). SF for that is used for investigating multiple 
scattering has a more complicated form of f(x, y), e.g., 
œmeanderB (Fig. 1c). For the SF that compensates for 
z$2 dependence of a lidar return, the form of the 
normalized function f(x, y)  = f(y)  is shown in 
Fig. 1d as a parabola. The shape of a SF, displacement 
of its geometrical center with respect to the optical axis 

of the objective h, and the transmission function 
f(x, y) are considered below in the SF coordinate 
system which is related to that of the receiving 
objective. The restriction imposed on the incidence u of 
the flux is connected, for instance, with the SF finite 
thickness and with the number aperture A = sin u = (nf

2

 $ no
2)1/2 of optical wave guides. Here nf and no are 

refractive indices of the fiber core and its cladding, 
respectively.20 

 

 
 

Fig. 1. Spatial filters in the form of diaphragms: round decentered (a) and its normalized transmission function (b); f(x, y)  of 

the SF for separating multiple scattering orders (c); f(x, y)  of the compensating SF (d); the shape of the diaphragm 

compensating for z$2 (e); O is the projection of the optical axis of the objective onto the SF plane. 

 
The term œfield stopB which is now used in lidar 

technology, is not quite correct according to Ref. 21, 
because the diaphragm is not constantly in the plane of 
the scattering volume image because the latter 
permanently moves in the image space behind the 
objective. So, a round-shaped diaphragm is vignetting 
within a certain range interval. 

 

3. Imaging of a scattering volume  in 
the approximation of geometrical optics 

 

Analysis of the SF operation has been generalized 
using the results obtained in Refs. 3$8 devoted to 
formation of the image of a scattering volume which is  
 

formed by a laser pulse in a  medium sounded. Figure 2 
presents the optical arrangement of sounding with a  
biaxial lidar having the separation B0 and the angle γ 
between the optical axes of the receiving and 
transmitting systems whose aperture diameters are Dr 
and D0, respectively. The axis OZ of the cylindrical 
coordinate system is aligned with the optical axis of the 

receiving system. The angle γ = (γ ||
2
 + γ⊥

2)1/2, and the 
angles γ|| and γ⊥ characterize the slopes in the planes 
YOZ and XOZ (the positive value of γ|| corresponds to 
intersection of the projection of the axis O1O1 with the 
OZ axis in the space of objects). Let us consider the 
diaphragm of diameter 2a as a SF. The diaphragm is 
displaced from the focal plane of the objective by the 
distance + z0. 

 

 
=        b 

 

Fig. 2. Construction of the scattering volume image in the receiving system of a lidar: general view (a); section of the scattering 
volume in the plane A (b). 
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Within the circle of D(z) = D0 + θ0 z (Fig. 2a) 
diameter, illumination at the point M(r, θ, z) is 
characterized by the expression E(ρ, ϕ, z) =  
= P0 T(z) i(ρ, ϕ)/[πD2

 (z)/4], where θ0 is the 
divergence angle of the sounding beam; ρ, ϕ are the 
polar coordinates in its cross section (Fig. 2b); P0 is 
the pulse power; T(z) is the atmospheric transmission; 
i(ρ, ϕ) is the factor taking into account the 
distribution of the radiation intensity that satisfies the 

condition [4/πD2
 (z)] ⌡⌠

0

D(z)/2

   ρ dρ ⌡⌠
0

2π

 i(ρ, ϕ) dϕ = 1. In 

the general case, illumination is  inhomogeneous over 
the cross section due to both the mode structure of laser 
radiation and its turbulent distortions in the 
atmosphere. 

We assume the return signal to be described in the  
single scattering approximation at the distances much 
larger than the spatial length of the sounding laser 
pulse, i.e., z >> “ τ/2. At smaller z, it is necessary to 
take into account the shape of sounding pulse. Using 
the expression for reflection coefficient of the scattering 
volume η(z) = (“τ/2) βπ(z), where βπ(z) is the 
backscattering coefficient, one can define the value of 
the radiation flux scattered by an infinitesimal surface 
element dS = r dr dθ from the neighborhoods of the 
point M(r, θ, z) and incident onto the entrance 
aperture as: 

dP(r, θ, z) = η(z) P0 i(ρ, ϕ) T2(z) Aeff rdrdθ/ 

 /[πD2(z) z2/4], (1) 

where Aeff = πDr
2/4 for a lens objective or  

Aeff = π(Dr
2/4 $ b2) for a mirror objective with the 

secondary mirror of 2b diameter. The angle i of the 
slant incidence of radiation onto the objective arrived 
from the above mentioned large distances z and bases 
B0 is such that cosi ≅ 1. 

The projection of the point M moves in the plane 
XOY while z increases, as the angle between the 
optical axes γ differs from zero. The polar coordinate 
system of the beam cross section ρ, ϕ relates to the 
coordinate system r, θ, z (see Fig. 2) via the transform 

 

⎩⎪
⎨
⎪⎧

ρ2(z) = r2(z) + B2(z) − 2r(z) B(z) cosθ(z),

ϕ(z) = arcsin{[r(z)/ρ(z)] sin θ(z)},

r2(z) = (r1 $ γ|| z)2 + (γ⊥z)2,

B2(z) = (B0 − γ|| z)2 + (γ⊥z)2,

θ(z) = θ1 + arctan[γ⊥z/(B0 − γ|| z)],

(2) 

where r1 and θ1 are the coordinates of the projection of 
the  M(r, θ, z) point onto the plane of lidar apertures 
(XOY). For a purely coaxial system γ = 0, B0 equals 
zero, and the formulas (2) reduce to a simpler form. 

In the approximation of paraxial optics,20
 the 

image of the point M is at a distance z′(z) = f r
2/(z − fr) 

behind the focal plane being at the same time  
 

displaced from the optical axis at the distance 
r′(z) = r(z) fr/(z − fr). The rays coming from the point 
M form a diffuse circle in the diaphragm plane. Its 
diameter is 

 dr
′ = νDr fr/z, (3) 

and center is displaced from the optical axis by the 

distance r′ = ζ r(z) fr/z, where ν = ζ − z0 z/f r
2 and 

ζ = 1 + z0/fr. The coefficient ν characterizes the degree 
of defocusing of the point M image in the diaphragm 
plane. For a given z0, there exists a unique conjugate 
plane in the space of objects for which the point M is 
represented also by a point. It is at the distance zc from 
the objective, z“ = fr (1 + fr/z0). In all other cases, a 
converging or diverging cone-shaped beam passes 
through the diaphragm from the point M. It forms a 
diffuse circle with the area 

 Sl
′ (z) = π(ν fr Dr/2z)2 = (ν fr/z)2 Aeff. (4) 

Illumination within the circle, without a regard 
for edge and diffraction effects, can be considered to be 
homogeneous and equal to dE(r′, θ′, z′) = 

= dP(r, θ, z)Kt/Sl
′ (z), where Kt is the objective’s 

transmission coefficient. Thus formed illumination is 
created by light from each point of the cross section 
D(z). The total diameter D′(z) of the defocused image 
of a scattering volume in the diaphragm plane and the 
displacement B′(z) of its center from the optical axis 
are as follows: 

 D′(z) = [ζD(z) + νDr] fr/z, (5) 

 B′(z) = ζB(z) fr/z. (6) 

The diameter D′(z) decreases with the increasing 
z, and its center drifts towards the optical axis of the 
receiving objective (for a biaxial system) and 
approaches the focal plane. The trajectory of the 
displacement of this center is inclined to the optical 
axis of the receiving objective at an angle 

 α = arctan B(z)/fr. (7) 

A part of the radiation flux from the point M that 
passes the diaphragm without a vignetting equals 

 dΦ(r, θ, z) = dP(r, θ, z)Kt SMeff
(z)/Sl

′ (z), (8) 

where SMeff
(z) is the area of intersection of the 

diaphragm aperture and the image spot within the  

circumferences of radii a and dr
′/2. B y substituting 

Eqs. (1) and (4) into Eq. (8) and passing to the 
variables r′, θ′ in the diaphragm plane, we obtain total  
flux coming to the photodetector from the entire 
scattering volume sounded  by integrating over the area 
of the image spot 

 Φ(z) = η(z) Po T2(z) Kt Aeff g(z)/z2, (9) 

where 
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 g(z) = 16π−2 [D′(z)]−4 ⌡⌠
0

D′(z)/2

   r′ dr′ × 

 × ⌡⌠
0

2π

 Seff(z)i(r′, θ′) dθ′, (10) 

and Seff(z) is the area of intersection of the diaphragm 
aperture and the spot of the scattering volume image 
(Fig. 3b). 

The value g(z), which enters into Eq. (9), 
characterizes the transmission coefficient of the 
receiving system. The coefficient is caused by vignetting 
of the backscattering radiation flux coming from the 
distance z and is called the lidar geometrical function 
(GF).3,5$9 It is defined by optical parameters of the 
lidar. Depending on the relation between them, 
different degrees of vignetting are possible3,8 (Fig. 3): 

 

1) full vignetting in the blind zone (Fig. 3a, 3e), 
when Seff(z) = 0, g(z) = 0; 

2) the image spot only partially enters the 
diaphragm (see Fig. 3b) at 

 |a − D′ (z)/2| ≤ B′(z) ≤ a + D′(z)/2, (11) 

 Seff(z) = a2{[2arccos X1 − sin(2arccos X1)] + 

+ [D′(z)/2a]2 [2arccosX2 − sin(2arccos X2)]}, (12) 

where 

X1 = {[B′(z)]2 − [D′(z)/2]2 − a2}/2aB′(z), 

X2 = {[B′(z)]2 + [D′(z)/2]2 − a2}/2aB′(z); 

3) full transmission (Fig. 3c, 3d), Seff(z) = 
= π[D′(z)/2]2/4 what corresponds to g(z) = 1 and 
takes place at  a > D′(z)/2 and B′(z) ≤ a − D′(z)/2. 

 
= b c d e 

 

Fig. 3.  Vignetting of the radiation flux coming from different distances z by the field stop diaphragm. 

 
B y substituting Eq. (12) into Eq. (10) and 

integrating, one can calculate GF of a particular lidar 
with the distribution i(r′, θ′) over the cross section. 
Thus calculated results for uniform and Gaussian 
intensity distributions over the cross section of a laser 
beam can be found in Refs. 3, 5$7. Using the above 
considered technique, one can calculate GF of a lidar 
with SF having, for instance, a slit shape.15 A universal 
program for calculating lidar GF has been proposed in 
Ref. 22. Experimental methods for determining GF by 
use of movable screen-targets are also used (see, for 
instance, Refs. 23, 31). 

 

4. Range limits of the geometric  
function 

 

The calculated relations that are presented in this 
section generalize the results of Refs. 3, 8, which were 
obtained in a single scattering approximation. 

Biaxial lidar. The boundary of the shadow zone 
z = L1 (see Fig. 3a) is defined by the less root of the 
equation quadratic in z: 

  

 B′(z) = a + D′(z)/2, (13) 

L1 = B0 
[(ξ + γ|| χ)

2 $ γ⊥
2 (1 $ χ2)]1/2 $ (γ|| + ξχ)

ξ
2 $ (γ ||

2 + γ⊥
2)

 , (14) 

where  χ = (Dr + D0)/2B0 is the packing coefficient; 

ξ = a/ζf
 r + θ0/2 $ Dr z0/2ζ f r

2. If the optical axes are 
parallel (γ|| = γ⊥ = 0) and z0 = 0, we obtain 

 L10 = [2B0 $ (Dr + D0)]/(2a/fr + θ0). (15) 

The boundary z = L2 (see Fig. 3c) is defined by 
the less root of the equation 

 B′(z) = a $ D′(z)/2, (16) 

L2 = B0 
[(ψχ $ γ||) +[(ψ + γ|| χ)

2 $ γ⊥
2(1 $ χ2)]1/2

ψ
2 $ (γ ||

2 + γ⊥
2)

 , (17) 

where ψ = a/ζ fr 

− θ0/2 − Dr z0/2ζ f r
2. For γ|| = γ⊥ = 0 

and z0 = 0, we obtain the well known expression 
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defining the distance, from which the lidar equation in 
a single scattering approximation becomes valid : 

 L20 = [2B0 + Dr + D0]/(2a/fr − θ0). (18) 

Since the values Dr, D0, fr, and θ0 are usually set 
in calculating dimensions and energy potential of a 
lidar,24 the boundaries L1 and L2 can be changed by 
changing the base B0 and angle γ (mostly, by varying 
the diaphragm diameter 2a and the diaphragm 
displacement into the transfocal space of the objective). 
The displacement leads to a decrease in L1 and L2. 

As seen from Eq. (14), the condition | γ | < ξ must 
be satisfied; otherwise, L1 → ∞ for γ = ξ. The formula 
(17) also imposes restrictions on the permissible value 
of the slope of optical axes, | γ | < ψ, so that the 
vignetting be stopped at a given distance. For γ ≥ ψ, 
starting from the distance z ≥ L3, the vignetting can 
occur again, what is described by the second root of 
Eq. (16) 

L3 = B0 

[(γ|| $ ψ χ) + [(ψ + γ|| χ)
2 $ γ⊥

2 (1 $ χ2)]1/2

(γ ||
2 + γ⊥

2) $ ψ2  . (19) 

At the values γ ≥ ξ at z = L4 (see Fig. 3e), full 
vignetting can occur; the second root of Eq. (13) is 

L4 = B0 

[(γ|| + ξ χ) + [(ξ $ γ|| χ)
2 $ γ⊥

2 (1 $ χ2)]1/2

(γ ||
2 + γ⊥

2) $ ξ2  . (20) 

As a rule, one chooses γ < ψ and, in the range 
L2 ≤ z < ∞, the radiation flux is not vignetted.  
Figure 4 presents the relative value of the transition 
zone L2/L1 = (1 + χ) (1 + μ) /(1 − χ) (1 − μ) which 
is obtained by dividing Eq. (18) by Eq. (15). Here 
μ = fr θ0/2=. Small values of the parameters χ and μ 
correspond to consideration of the intersection 
conditions for the optical axes of the receiving and 
transmitting systems in the object space.25 

 

 
 

Fig. 4. The value of the lidar transition zone as a function of 
the relative parameters of the transmitter-receiver. 

 

Figure 5 illustrates the influence of the angles  γ|| 
and γ⊥ upon the value L2 (L20 = L2 for γ|| = γ⊥ = 0). 
Each value of the slope angle γ|| in the plane YOZ 
corresponds to a critical value of the misalignment in 

the plane XOZ (see Fig. 2), γ⊥cr 
= (ψ2 − γ ||

2)1/2. When 

reaching the critical value, the interval of the operation 
zone L2 $ L3  collapses to a point. This corresponds to 
the fact that the image spot emerges from the 
diaphragm just after entering it. Vertical lines in Fig. 5 
correspond to this case. 

 

 
 

Fig. 5. Influence of optical axes misalignment upon the 
relative variation of the transition zone dimensions. 

 
Coaxial lidar. For a coaxial system, B0 = 0 and 

B(z) = γz. The blind zone is formed due to shading of 
the central part of the objective by a screen of the 
diameter 2b ≥ D0 (see Fig. 2a). In the range 0 ≤ z ≤ L1, 
the shading circle, which is defined by the radius 
b′(z) = νbfr/z, exceeds the diaphragm diameter 2a, and 
the radiation flux from the scattering volume does not 
reach the photodetector. The equation for determining 
the boundary of the blind zone (z = L1) is 

 = + R′(z) = b′(z), (21) 

where R′(z) = [D(z)/2 + B(z)]ζfr/z is the boundary 
point on the diameter of a scattering volume image. B y 
use of Eq. (21), we obtain 

L1 = (2b $ D0)/{2[= + b(ζ $ 1)]/ζ fr + 2γ + θ0}. (22) 

For z0 = 0, the expression (22) can be reduced to: 
L10 = (2b $ D0)/[2=/fr + 2γ + θ0]. From this it 
follows that the displacement of the diaphragm to the 
transfocal space leads to a decrease in L1. 

The boundary of the transition zone, z = L2, can 
be obtained from the equation (16): 

L2 = (Dr + D0)/{[2= + Dr(ζ − 1)]/ζ fr − (2γ + θ0)}. 
  (23) 
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If z0 = 0, we obtain L20 = (Dr + D0)/[2=/fr $ 
$ (2γ + θ0)]. As seen from Eq. (23), the condition 
γ < {[2a + Dr(ζ $ 1)]/ζ fr $ θ0}/2 must be satisfied; 
otherwise, L2 → ∞, and vignetting takes place over the 
whole interval of sounding range. 

 

5. Requirements to the spatial filter and 
the efficiency criteria 

 
Spatial filtration is a tool to separate out an 

optical signal from its mixture with the background 
noise. It is based on the distinctions in their spatial 
structure. For this purpose, a lidar SF must provide for 
their best separation. In most lidars, non-coherent 
spatial filtration is used, so the divergence θ0 of the 
sounding radiation must be minimal to increase the  
density of its power and minimize dimensions of the 
scattering volume and the image D′(z) corresponding to 
it. Within the frameworks of the  theory of optimum 
linear filtration, two optimum criteria are most 
common: reaching either a minimum of the noise 
variance or a maximum of the signal-to-noise ratio at 
the SF output.26,27 The SFs applied in lidars use the 
second criterion. 

We believe that the main efficiency criteria for SF 
are the following: 1) transmission coefficient and 
spatial boundaries of the interval of its action within 
the angular field of view or range; 2) the value of the 
signal-to-noise ratio. For a SF that is being used to  
controlled vignetting of a radiation flux, the error of 
the control law is an additional criterion. 

From the viewpoint of SF application, lidar 
systems can be divided into two main groups: 1) those 
used for determining profiles of the atmospheric 
parameters (with the allowance for  multiple 
scattering) and 2) for determining ranges to objects 
having high reflectivity contrast. For lidars from the 
first group, the information parameter of a signal is in 
its shape (amplitude or number of photo counts per 
time gate); so it is necessary to minimize the effect of 
the receiving system transmission and, correspondingly, 
of the SF on the shape of a lidar return within a given 
range. For lidars from the second group, accuracy in 
transmitting the shape of an echo signal is less 
significant. Proceeding from this, one differentiates the 
requirements  to the SF. 

The first of the efficiency criteria characterizes the 
information content of lidar systems. To increase it, the 
SFs of lidars from the first group must have 
transmission coefficient close to 1 in as wide range 
interval as possible. For lidars of the second group, the 
SFs must support a preset law of the radiation flux 
control with a minimal error also in a wide range 
interval. From the viewpoint of increasing the signal-
to-noise ratio, requirements to SFs from both of these 
groups are similar. 

As applied to lidars intended for sounding 
optically dense media, spatial filtration enables one to 
separate contributions coming from different orders of 

multiple scattering to the received radiation flux that 
have different angular distribution within the field of 
view of the receiving system.12,13 

 

6. Matched and optimum diaphragms 
 
In choosing diaphragm dimensions for lidars of the 

first group, two contradictory conditions must be 
satisfied. On the one hand, its aperture must be large 
enough to minimize the boundary L2 to minimize 
vignetting and thus to increase the information content 
of sounding. On the other hand, the aperture must be 
decreased to reduce the background radiation flux. As 
shown in Sec. 3, on a biaxial lidar, the spot of the 
scattering volume image moves along a trace in the 
diaphragm plane with increasing z. The boundaries of 
the trace define the minimum size of a region necessary 
to transmit the radiation flux without vignetting. So 
the dimensions of a round aperture can be decreased4 to 
decrease the background flux. The diaphragm whose 
shape coincides with the track of the moving image 
spot is considered to be matched. 

Assigning the initial L2 and maximal Lm sounding 
ranges, we obtain by Eq. (5) the radius of the large 
r1 = D′(L2)/2 and small r2 = D′(Lm)/2 arcs 
restricting the diaphragm along the axis of symmetry. 
The distance between their centers is 
d = ζ fr [B′(L2)/L2 $ B′(Lm)/Lm]; their positions can 
be obtained from Eq. (6). Here L2 is defined by the 
energy potential of the lidar.28 The matched diaphragm 
(Fig. 6) is mounted so that the center O coincides with 
the image center at z = Lm, and the axis OY lies in the 
same plane as the optical axes of the receiving and 
transmitting systems. For a comparison, Fig. 6 presents 
a usual diaphragm centered on the optical axis of the 
receiver to provide the same value L2. In mounting the 
matched diaphragm into the focal plane (Lm → ∞),  the 
formulas for the dimensions become simpler: 
r1 = fr[(Dr + D0)/L2 + θ0]/2, r2 = fr θ0/2, 
d = fr B0/L2. 

 

 
 

Fig. 6. Diaphragms of reduced dimensions: matched (1); 
round off-center (2); usual centered (3). 

 
One can additionally decrease the cross size of the 

matched diaphragm and make it optimal by mounting it 
in the transfocal space of the receiving objective, 
according to Eq. (7), at an angle α to its optical axis.  
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Then the cross size of each part of the diaphragm along 
the axis OX is more accurately conjugated with the 
diameter of the scattered volume image and has the 
minimum value 

 Dmin
′ (z) = D(z) fr/z (24) 

(see Eqs. (24) and (5) for a comparison). B ecause of 
the inclined position of an optimum diaphragm, the 
arcs of radii r1 and r2 are transformed into parts of 

ellipses with the major axes Dmin
′ (L2)/sinα and  

Dmin
′ (Lm)/sinα and minor axes Dmin

′ (L2) and  

Dmin
′ (Lm). The distance between the centers of the 

ellipses is d′ = d/sinα. The area of the projection of 
the optimum diaphragm onto the focal plane is smaller 
as compared with the matched one. The optimum 
diaphragm provides for the best signal-to-noise ratio at 
non-vignetted reception of the backscattered radiation 
from the entire path L2 $ Lm due to minimal cross size. 
Use of diaphragms of the matched and optimum shapes 
enables one to enhance the information content of lidar 
sensing with such systems due to shorter range L2 and 
increased upper boundary of a lidar return signal.4 

Instead of a diaphragm of the matched shape, one 
can use a round one4 with the  diameter 

 2a′ = r1 + r2 + d. (25) 

If it is installed in the focal plane, we have 

 2a′ = fr [B0 (χ + 1)/L2 + θ0]. (26) 

The center of the diaphragm is displaced with 
respect to the axis OY (see Fig. 6) by the value 
h = (d + r1 $ r2)/2. B ecause of a smaller size the off-
center round diaphragm enables one to increase the 
signal-to-background ratio by a factor of 4/(1 + ε)2 as 
compared with a centered diaphragm of the diameter 2a 
providing for the same value L2. Here 
ε = θ0 L2/(2B0 

+ Dr + D0 

+ θ0 

L2). At ε ≤ 0.1 one can 
obtain almost 4-fold reduction of the background level. 
For the matched diaphragm, the increase of the signal-
to-background ratio is even higher. 

In a realistic lidar, inaccuracy of the alignments, 
deformation of optical systems, and possible aberrations 
lead to additional broadening of the image spot in the 
diaphragm plane what requires an  increased size of the 
diaphragm. Finally, the influence of these factors can 
be taken into account in calculation formulas by 
equivalent increase of the divergence angle θ0 of the 
sounding beam. 

The influence of the objective’s aberrations which 
increase as the image points move away from the optical 
axis can be reduced by choosing the corresponding 
value of the angle γ||.4 According to Eqs. (2) and (6), 
B′(z) depends on h = a′ $ fr(θ0/2 + γ||) and the 

displacement of the center of the considered diaphragm 
is h = 0. It can be centered on the optical axis by putting 
h = 0 what can be reached at γ|| opt = a′/fr $ θ0/2. In 
this case, the images of the scattering volumes from the 
entire sounding path from L2 to Lm → ∞ are closer  
 

to the optical axis of the objective. This weakens the 
influence of aberrations and makes the diameter of an 
actually needed diaphragm closer to the size defined by 
relations (25) or (26). In the same way, one can 
arrange the matched and optimum diaphragms. 

In coaxial lidars (B0 = 0) with coinciding (γ = 0) 
or diverging (γ ≠ 0) axes of the receiving and 
transmitting systems, the image of a scattering volume 
remains centered about either the optical axis of the 
objective at γ = 0 or a straight line parallel to this axis 
and shifted from it by the distance h = γfr. The 
diaphragm is centered with respect to this straight line 
and its aperture must correspond to the shape of the 
sounding beam cross section. The dimensions of the 
diaphragm are to be chosen with the account of the  
boundaries of the blind and transition zones L1 and L2. 

7. Controlling diaphragms and rasters 
 
Using the results presented in previous sections, 

we analyze SF intended for controlled vignetting of the 
backscattered radiation flux. 

The profile of a diaphragm compensating for z$2 
dependence in the lidar return signal has been  analyzed 
by the authors together with S.A. Danichkin for a 
biaxial lidar in the case when the diaphragm is 
installed (see Fig. 1e) in the focal plane of the 
objective under the condition that illumination is 
distributed uniformly over the image spot of the 
diameter D′(z) and γ = γ||, while γ⊥ = 0. In the transition 
zone, L1 < z < L2 = zb, this spot moves and fills the 
lower part of the diaphragm. This part is formed by a 
semicircle of r0 radius while the leading edge of a 
return signal is formed. Controlled vignetting begins at 
z ≥ zb when the diaphragm transmits a portion of the 
radiation flux defined by Eq. (12) for a = r0, 
B′(zb) = yb and D′(zb) = 2ρ(zb): 

 Seff(zb) = πr0
2/2 + r0[ ρ

2(zb) $ r0
2
 ]1/2 + 

 + ρ
2(zb) arcsin[ r0/ρ(zb) ] $ 2r0(yb $ h), (27) 

where h is the distance between the center of the arc of 
radius r0 and optical axis of the objective. The 
boundaries L1 and zb are determined from the conditions 

B′(L1) = h + r0 + ρ(L1) and B′(zb) = h + [ρ2(zb) $ r0
2]1/2. 

The condition for the z$2 compensation to work is  
d

dz 

 
Seff(z)

z2 πρ2(z)
 = 0 that is satisfied at 

 Seff(z) = C z2 πρ2(z), (28) 

where the value C is to be determined. B elow we 
suppose that ρ(z) = ρ0[1 + (Dr + D0)/θ0 z], and 
ρ0 = fr θ0/2 is the spot radius at the distance ze (by 
the end of the control zone). The former is valid for 
(Dr + D0)/θ0 

ze << 1. For weakly collimated beams, one 
can take ρ(z) = ρ0 within the entire interval zb ≤ z ≤ ze 
under condition that  
 



       Atmos. Oceanic Opt.  /April  1999/  Vol. 12,  No. 4 A.I. Abramochkin and A.A. Tikhomirov 
 
338 

 (Dr + D0)/θ0 zb << 1. (29) 

One can see from Fig. 1e that, for z > zb, the area 
Seff(z) is formed by the upper arc segment which is 
described in the diaphragm coordinates by the 
expression yup = [ρ2(z) $ x2]1/2

 $ y1, where y1 = B′(z). 
Its lower part is determined by a semicircle of radius r0. 
The lateral sides are defined by the diaphragm profile 
ylat(x), the expression for which is to be obtained. The 
function ylat(x) must satisfy three conditions: 
ylat(r0) = $h; ylat(ρ0) = fr (B0/ze $ γ||); dylat(x)/dz = 0. 
For the interval zb ≤ z ≤ ze, we have 

 Seff(z) = πr0
2/2 + X[ρ2(z) $ X2]1/2 + ρ2(z) × 

× arcsin[X/ρ(z)] + 2(r0h $ X y1) $ 2 ⌡⌠
r0

X

 ylat(x) dx, (30) 

where the value x = X is defined so that the curves 
intersect: yup(X) = ylat(X). B y differentiating Eq. (30) 
with respect to z, we obtain 

 dSeff(z)/dz = 2fr B0{X $ χρ(z) arcsin[X/ρ(z)]}/z2, 
  (31) 

where, as above, χ = (Dr + D0)/2B0. Under condition 
(29) the expression (31) reduces to a simpler form: 

 dSeff(z)/dz = 2fr B0 X/z2. (31=) 

Differentiating Eq. (30) with respect to z and 
equaling it to Eq. (31), we have 

 2Cz πρ(z)ρ0 = 2fr B0{X $ χρ(z) arcsin[X/ρ(z)]}/z2, 

 (32) 

by use of which, and two boundary conditions 

 X = r0 at z = zb and X = ρ0 at  z = ze, (33) 

we obtain the expression relating the initial and final 
distances: 

ze/zb = 

3
(1 $ χπ/2)/{r0/ρ(zb) $ χ arcsin[r0/ρ(zb)]} . 

 (34) 

Since the ratio r0/ρ(zb) << 1 always holds, ze/zb = 
= klat × {ρ0[1 + (Dr + D0)/θ0 zb]/r0}1/3, where the 
coefficient klat = [(1 − χπ/2)/(1 − χ)]1/3 imposes 
restrictions on the minimum value of the spacing 
between the axes, B0 min = π(Dr + D0)/4. The 
coefficient klat rapidly decreases as χ tends to 
χmax = 2/π. This makes the interval, where z$2 is 
compensated for, shorter. It is worth choosing 
B0 > (Dr + D0). Under the condition (29), the 
expression (34) reduces to 

 ze/zb = (ρ0/r0)1/3. (34=) 

Determining the value C by use of Eq. (33), we 
obtain, by making use of Eq. (32), the equation for 
coordinates of the lateral diaphragm contour. The 
equation relates X to z: 

 X/ρ(z) $ χ arcsin[X/ρ(z)] = {r0/ρ(zb) $ 

 $ χ arcsin[r0/ρ(zb)]} z2 ρ(z)/zb
3. (35) 

It is a transcendent equation relative X and can be 
solved only numerically if lidar parameters and the 
quantities r0, ρ0, and h are known. If inequality (29) 
holds, X = r0(z/zb)3 = ρ0(ze/z)3.  Then, from the 
condition yup(X) = ylat(X) we obtain the expression for 
the profile of the lateral side of the diaphragm 
compensating for z$2: 

ylat(. ) = [ρ0
2
 $ x2

 ]1/2
 $ fr B0[(ρ0/. )1/3/ze $ γ||/B0]. 

 (36) 

One can see from Eq. (34a) that, to broaden the 
interval of control at a given value ρ0, it is necessary to 
minimize r0. At the same time, since  

Seff(zb) ≈ πr0
2/2, the radius r0 defines the minimum 

level of power Φ0 transmitted through the diaphragm 
when regulating  the radiation flux. It is easy to 
demonstrate that r0 = ρ0 [2Φ0/P(zb)]1/2, where P(zb) 
is the flux of radiation entering the diaphragm in the 
beginning  of the process of controlled vignetting. 
Taking into account Eq. (34a), we have 
ze/zb = [P(zb)/2Φ0]1/6. The value Φ0 is defined by 
the necessary excess of a lidar return over noise. 
Assuming the attenuation P(zb)/Φ0 = 2⋅106, we obtain 
that compensation in this case is achievable in the 
range multiple to 10. Thus, the  compression coefficient 
for the dynamic range of a lidar signal29 G achievable 
is 100. With the increase in Φ0, the range interval of 
the efficient control, zb $ ze, becomes narrower. 
Analysis of the diaphragm contour presented here is 
more accurate as compared with that in Ref. 18. The 
latter was performed considering intersection of the 
cones of directional patterns  of the transmitting and 
receiving systems in the space of objects. The 
diaphragm compensating for z$2 considerably decreases 
the level of background radiation fluxes due to its 
reduced area. However, starting from the distance 
z ≥ ze, it is impossible to compensate for the decrease in 
the received power by an increase in the diaphragm size 
because its dimension along the x axis reaches the 
maximum equal to the radius of the image spot ρ0. 
Continued vignetting of the radiation flux at the range 
z ≥ ze leads to its quick decrease and reduces the energy 
potential of the lidar (Fig. 7). 

To eliminate this shortcoming, a special controlling 
diaphragm was proposed.30 It introduces maximal 
vignetting of the lidar return from near distances when 
their intensity is high; besides, it increases transmitting 
with increasing z so that the optical flux passes through 
the diaphragm completely at the maximum distance zf. In 
this case, its contour (Fig. 8) is formed by a combination 
of an arc of a circle with radius ρ0 = fr θo/2. The arc is 
tangent to the lateral sides of the diaphragm which are 
formed by the second order curves. These curves, in their 
turn, are tangent to each other and to the axis of 
symmetry of the diaphragm; the point of tangency of the 
curves, which describe the lateral sides, is spaced from 
the circle center by the distance h = fr B0(1/zb $ 1/ze) $
$ ρ(zb). If zf does not tend to infinity, the center of  
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the circle of radius r0 must be displaced from the axis 
of the receiving objective by a distance equal to 
fr B0/ze. Reducing the dynamic range of the radiation 
flux, the diaphragm does not limit the energy potential 
of the lidar (see Fig. 7). As shown in Ref. 2, the 
highest degree of vignetting can be achieved with a 
diaphragm having its lateral sides formed by a circle arc 

with the radius R = (h2
 $ ρ0

2)/2r. 
 

 
Fig. 7. Radiation flux passing through different SF: non-
vignetted reception (1); usual centered diaphragm (2); 
diaphragm compensating for z$2 (3); controlling diaphragm 
(4). 
 

 
 

Fig. 8. The profile of a vignetting diaphragm. 
 

A film raster in the form of an optical wedge16 when 
applied to compensate z$2, can be placed in the focal 
plane of an objective, provides for variation of the 
transmission factor no more than by 200 times. This is 
caused by the maximum possible density of photographic 
materials. Since the image spot has a finite diameter 
D′(z), the radiation flux arrived from the distance z 
passes simultaneously through the wedge parts having 
different transmission coefficients. So it is impossible to 
obtain exact compensation for the z$2 dependence of the 
lidar return. Technologically fabrication of a small-size 
optical wedge is difficult. To overcome this difficulty, it 
was proposed in Ref. 16, to increase the trajectory of 

the image spot, and the base B0 equal to 3 m was used 
to achieve this task. The value fr was chosen to be 
small to reduce the diameter D′(zb). 

Like the diaphragm of optimum shape, the raster 
compensating for z$2 dependence of the received 
radiation flux ought to be mounted in the transfocal 
space of the objective so that the normal to its surface 
and the axis of symmetry be in the plane passing 
through the optical axes of the receiving and 
transmitting systems17 and its axis of symmetry being 
inclined relative to the axis of the receiving objective at 
an angle α defined by the relation (7). In this case, the 
image has the minimal diameter (24) at each point of 
the axis of the filter-raster. Figure 9 presents the 
optical arrangement of a lidar, in which SF is a plane 
mirror with the reflection factor Rmin ≤ R(z) ≤ Rmax 
variable along the axis of symmetry O1O1′.17 The 
radiation flux, scattered in the medium at the distance 
zb and passing through a usual diaphragm without 
vignetting, falls onto the mirror part with R(z) = Rmin 
which is most distant from the diaphragm. With the 
increase in z, intensity of incident  radiation decreases 
and the image spot is displaced over the mirror along 
the axis O1O1′ into the domain with the increasing 
value of R(z). The position of the mirror part with the 
required value of R(z) on its surface is defined by the 
expression y = B0 fr[Rmax/R(z)]1/2/ze where y is the 
distance along the axis O1O1′ from the point of its 
intersection with the focal plane of the objective. The 
images of scattering volumes, according to Eq. (24), 
will be minimal because they are in the mirror plane 
independently of distance. If the condition (29) is 
fulfilled, Dmin′ (z) = fr 

θ0 and the mirror parts with 
different reflection factors will overlap within the 
image to a lesser degree. Therefore, the law of z$2 
compensation should fulfill more accurately as 
compared with the case when the controlling SF is 
mounted in the focal plane. The maximum value of the 
compression coefficient of the dynamic range G 
achievable with such an SF is less than 96. 

 

 
 

Fig. 9. Mirror-based compensating SF: transmitting system 
(1); receiving objective (2); diaphragm (3); mirror (4); 
photodetector (5). 

 

Comparative characteristics of the controlling SFs 
with respect to the transmission coefficient are 
presented in Fig. 7. It should be noted that 
misalignment between the optical axes of the receiving 
and transmitting systems and redistribution of radiation 
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intensity over the spot of the scattering volume image, 
what is caused by atmospheric turbulence or by the 
source itself, lead to violation of z$2 law compensation. 
So it is helpful to use controlling SFs in lidars of the 
second group. B esides, to finally form the field of view 
of a lidar receiving system, a raster SF (mirrors and 
optical wedges) require additional diaphragms to 
suppress the background flux either in the focal plane 
of the objective or by combining it with the optimum 
diaphragm and a raster. 

 

8. Diaphragms and rasters for analysis 
of multiple scattering and special SF 

 
In sounding optically dense media (clouds, smoke 

plumes), effects of multiple scattering (MS) lead to an 
increase in the scattering volume size as the laser pulse 
enters the cloud.13,31 In this case, single scattered 
radiation with a certain portion of MS comes from a 
volume spanned by the diameter D(z) = D0 + θ0 z. 
B eyond this diameter, doubly and multiply scattered 
radiation is formed. In sounding distant clouds, the 
condition (29) is fulfilled; so, in the objective’s focal 
plane, the diameter which is defined by formula (5) is 
D′(z) ≈ 2ρ0 = fr 

θ0. Using a receiving system with 
several fields of view characterized by θr > θ0, one 
performs spatial selection of multiple scattering orders 
when viewing different parts of the scattering 
volume.12,31$34 

In studying the MS effects, to simplify the SF 
constructions, it is worth using coaxial lidars in which 
the image spot does not move in the filter plane. Here 
the SF are made as circle and ring diaphragms of 
different diameter, which are centered about the optical 
axis of the objective (γ = 0). Shading of the central 
part of the diaphragm by a circle 2ρ0 (see Figs. 1a and 
1c) enables one to isolate only the MS radiation that 
enters the photodetector.32 All the SF can be divided 
into two groups: 1) SF that enable one to measure the 
flux of MS radiation in different fields of view 
simultaneously and 2) sequential SF (accessory 
diaphragms), in which the change of the field of view 
must occur during time less than temporal fluctuations 
of the medium. The required range for variation of the 
field of view is θr = 0.1 $ 10 mrad.12,32 

Different types of SF with several fields view 
applied to studies of the MS effects are considered in 
Ref. 12. One of them is a device based on a matrix of 
four concentric photodiodes with the diameters 0.75, 
2.5, 5.0, and 7.6 mm. The device is placed in the focal 
plane of the objective. The transmission function of 
such a SF is similar to that presented in Fig. 1c with 

different distribution of the parts with f(x, y)  = 1. It 

makes it possible to measure MS radiation received 
within different fields of view simultaneously. The 
second similar type of the SF is a ring-shaped 
holographic element placed in the image plane and that 
uses the first-order diffraction of incident light at 

different angles to direct it to different photodetectors. 
Its main drawback is low coefficient of incident wave  
transformation into the first-order diffraction (no more 
than 30%). The third type of SF refers to sequential 
ones and is a set of accessory mesomorphic round masks 
with the diameters from 18.7 μm to 6.11 mm. The 
transmission coefficient of the masks is 42% in their 
open state and attenuation 10$5 in the closed state. 
Transmission is controlled by a computer. Spatial filters 
of the fourth type usual need some accessory 
diaphragms of the diameter from 76 to 9424 μm (32 
round apertures). The apertures are at the periphery of 
a revolving disc and provide for variation of the field of 
view angle in the range from 0.1 to 12.4 mrad, while 
the variation step of the diameter is ∼ 17%. 

In Ref. 13, a movable end of an optical wave 
guide, by use of which a part of the received flux was 
send to the photodetector, was used as a SF to study 
MS radiation flux which is formed in the focal plane of 
the objective around the image of a sounding beam of 
diameter 2ρ0. The flat end of a monofiber with the  
diameter 2af plays the part of a diaphragm but the 
limiting incidence angle for the beam  entering the fiber 

end is u = arcsin nf
2 $ no

2.  This angle is 10 $ 20° 
depending on the relation between nf and no and the 
length of the fiber.35 The latter must be taken into 
account in matching the SF with the objective’s 
parameters. It is also possible to create a multifiber 
bundle so that individual groups of fibers form 
concentric circles of different diameters at the one end 
of the bundle while at the other end being collected 
into bunches directing radiation from these rings to 
individual photodetectors. Having f(x, y) similar to the 
matrix of concentric photodiodes, such a SF makes it 
possible to measure MS radiation received within 
different fields of view simultaneously. 

Measurements of the wind velocity with lidars by 
the correlation technique36 require the sensing of the 
atmosphere to be performed along several directions 
different to each other by ∼ 6$7°. For this purpose, we 
have designed a wide-angle objective based on the 
Schmidt camera with a special SF. The latter is a disc 
with several small diaphragms with the diameter 2am 
mounted in the focal plane of the objective (Fig. 10). 

 
 

Fig. 10. Matrix SF: matrix diaphragm (1); focone (2); 
photodetector (3). 
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The centers of the diaphragms are shifted with 
respect to the optical axis at the distances hm1 
(hm2 = hm1 cosβ, where β is the angle between the plane 
containing the optical axes of the receiving and 
transmitting systems and the direction from the disc 
center toward the corresponding diaphragm). This SF 
enables one to realize narrow fields of view, 
θr,m = 2=m/fr, for different directions γm = hm/fr with 
respect to the optical axis of the receiving system. When 
the values of angle γm are about a few grades, the 
diameter 2hm1 exceeds the entrance aperture of the 
photodetector. So, to collect the received radiation fluxes 
onto one photodetector, we applied a focone made from 
K$8 glass and mounted it behind the diaphragm. The 
diameters of the input and output ends of the focone are 
 

52 an 22 mm, respectively; its side surface is formed by 
an arc of radius 422 mm. This SF provided, at small 
instant angle θr,m = 6 mrad, for receiving scattered 
radiation arriving from the directions separated by ∼ 6° 
with a stationary receiving system, oriented along a fixed 
direction.  

 

9. Comparative analysis of the spatial 
filters of a lidar 

 

The above considered SFs can be divided into three 
large groups: diaphragms, optical wave guides, and 
rasters. The  SF classification proposed, including the SF 
shapes, corresponding transmission functions f(x, y), and 
characteristic parameters are presented in the Table 1. 

 

Table 1.  Characteristics of the lidar SFs 
 

Filter type Shape f(x, y) Parameters Note 

  
 
 

round  

 
 

 

 
 

 

centered  

diameter 2a, displacement 
from the focal plane 0 $ +z0 

off-center 
diameter 2a’, displacement 

from the axis h 

 

 
 

Diaphragm 

 
matched  

 
 

the SF shape is defined by 
the shape of the image spot 
œtraceB in the diaphragm 

plane 

 

  
optimum  

 

 

 
 

same as above 

inclined to the focal 
plane at the angle 
α = arctan fr/b 0 

  
controlling 

  

the range interval of control 
ze/zb ≤ 10 

 

  
monofiber 

 

 
< 1 

defined by the optical wave 
guide parameters 

the limiting aperture 
angle 

u = arcsin n
2

f $ n
2

o 

 
Light guide 

 
multifiber bundle

 

 
 

idem 

 
fibers of concentric 
rings are united in 
individual bunches 

  

optical wedge 
transmission 

transmission 

 

 

 

maximum attenuation  
~200 

ze/zb ≤ 14 

 

 

Raster 

 

mirror  

reflection 

 

 

 

 
 

ze/zb ≤ 10 

 

inclined to the focal 
plane at the angle 
α = arctan fr/b 0 

  
ring concentric 
photodetector 

 

 

 
photosensitive surface 

defines the raster shape 
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10. Conclusion 
 

Analysis of different SFs performed, which form 
the field of view of a lidar receiving system, is based on 
constructing the image of a scattering volume in the SF 
plane and determining the transmission function of the 
filter. This allows one to consider from the general 
stand point all the operation features of SF for 
different purposes. A list of main characteristics and 
efficiency criteria for SF is considered. The shape of 
matched and optimum diaphragms that increase the 
signal-to-background ratio achieved with the biaxial 
lidars is determined. Comparison of diaphragms and 
rasters intended for controlled vignetting of the 
received radiation flux in a given range interval is 
performed. Different SFs of lidars for measuring 
multiple scattering and determining wind velocity by 
the correlation technique are considered. 
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