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Influence of the geometric averaging effect on the spatial spectrum of 

reflected radiation in the inhomogeneous stratocumulus clouds is studied by means 

of numerical simulation. The explanation of the scale break in the spatial spectrum 

in terms of the radiation smoothing effect is critically examined. 
 

1. INTRODUCTION 
 

Analysis of Landsat cloud images has shown that 
the cloud-reflected (in directions close to the zenith) 
radiation fields are not scale-invariant over the full 
range of the observable scales from ∼ 100 km to  
~ 30$100 m (Refs. 1 and 2). For the scales larger than 
200$500 m, the spatial spectrum of the radiation field 
follows approximately the power law with a slope close 
to that of the spatial spectrum of liquid water path 
(optical depth) of clouds. At smaller scales, the 
radiation field is a much smoother function than the 
optical depth field. Such a scale break suggests an 
existence of some characteristic scale which separates 
two distinguishable scaling regimes or physical 
processes, each governing radiation field fluctuations on 
the corresponding spatial scales.  

Evidently, the large-scale fluctuations of the 
radiation field are determined by variations of liquid 
water path (optical depth) of clouds. As to the 
radiation field smoothing on small spatial scales, the 
physical1 and statistical2 hypotheses, as well as 
geometric averaging,3 associated with finite field of 
view (FOVs) of real detectors, and radiative 
smoothing4,5 supposedly caused by horizontal radiation 
fluxes were proposed to explain the existence of the 
scale break in the spectrum. It should be recognized 
that all these hypotheses and explanations seem  to be 
not well grounded, and the physics of this phenomenon 
is poorly understood as yet.  

This paper studies the geometric averaging effect 
and its impact on the spatial spectrum of reflected 
radiation from inhomogeneous stratocumulus clouds. It 
also critically examines the explanations of the scale 
break in terms of the radiative smoothing effect. The 
next section briefly describes the used fractal model of 
stratocumulus clouds and a method of solution of three-
dimensional (3D) radiative transfer equation. Section 3 
discusses the effect of geometric averaging on the 
spatial spectra of albedo and the reflectance (into 
different solid angles) of clouds. Section 4 includes 
critical analysis of a weakness and evident shortcomings 
of the explanation of the scale break based on the 

radiative smoothing. The concluding section summarizes 
the main results obtained.  

 

2. FRACTAL MODEL OF CLOUDS AND METHOD 

OF SOLUTION 
 

In this work we made use of a modified fractal 
model of marine stratocumulus clouds Sc described in 
detail in Refs. 1, 6, and 7. Instead of cascade processes, 
the spectral methods of simulating random processes 
(fields)8 are used to generate numerical realizations of 
the distribution of optical depth. Input parameters to 
the spectral model are the mean <τ>, variance Dτ, and 

the exponent β of the power-law energy spectrum of the 
optical depth simulated as a random process with 1D 
lognormal distribution and a power-law spectrum. A 
continuous realization of this process is divided into 
Nx = 2nx pixels with equal horizontal dimensions 
δx = 0.05 km. Each pixel is assigned to have the optical 
depth τi, i = 1, ... , Nx, as a value of the random 
process at the point corresponding to the left-hand side 
of the pixel. Then the pixel extinction coefficient is 
calculated as σi = τi/h, where h is the cloud 
geometrical depth. In the calculations we used 
<τ> = 13, D

τ
 = 29, β = 5/3 and h = 0.3 km, which are 

typical for marine Sc.6,7 The calculations made for the 
cascade model1,6,7 with δx = 0.0125 km and spectral 
model from Ref. 8 with δx = 0.01 km are specially 
underlined in the text. 

Numerical simulation of the solar radiation 
interaction with inhomogeneous Sc clouds is performed 
with the scattering phase function of q1 cloud,9 
calculated for the wavelength of 0.69 μm by the Mie 
theory. We assume that there is no absorption by liquid 
water in the visible spectral range and the single 
scattering albedo ω0 = 1.0. The surface albedo is equal 
to zero, what roughly corresponds to the albedo of the 
ocean. The number of pixels is Nx = 212 = 4096 and, 
given δx = 0.05 km, the length of the cloud realization 
is 204.8 km. Solar incidence is defined by the zenith 
and azimuth angles, Θ0 and ϕ0. The latter is measured 
from OX-axis and is set to be zero throughout the 
computation.  
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The equation of radiative transfer is solved using 
the Monte Carlo method and periodic boundary 
conditions. Using direct simulation, we have calculated 
the albedo and the reflectance (into different solid 
angles) for each pixel, as well as the intensity of 
radiation reflected  toward zenith, which we will  
further call the zenith radiance. The relative 
computation error does not exceed 1%. 

 

3.GEOMETRIC AVERAGING 

 

We assume that a unit solar flux is incident on the 
top of the atmosphere (TOA). The reflectance 
F(x, Ht, Θ) into different cones of angular width Θ is 
defined by the formula 

F(x, Ht, Θ) = ⌡⌠
0

2π

 dϕ ⌡⌠
0

Θ

 cosϑ I(x, 0, Ht, ϑ, ϕ) sinϑ dϑ , 

 (1) 

where I(x, 0, Ht, ϑ, ϕ) is the intensity of the reflected 
radiation, Ht is the cloud top height, ϑ and ϕ are the 
zenith and azimuth angles, respectively. By definition, 
the cloud albedo R(x) = F(x, Ht, 900).  

The reflectance F(x, Ht, Θ) is formed owing to 
the  radiation, which, before reaching the detector, is 
scattered in some effective volume Ve (Fig. 1). This 
volume contains a set of points r0 = (. 0, y0, z0) falling 
within the detector’s FOV and satisfying the inequality 

(. 0 $ . )2 + y0
2 + (z0 $ Ht)

2 ≤ Re. Here Re ≤ h/cosΘ 
is an effective radius depending on the detector’s 
spatial position and the FOV, solar zenith angle, as 
well as optical properties and depth of a cloud h = Ht $
 Hb, where Hb is the cloud base height. It follows from 
simple physical considerations that, when h = const and 
the cloud extinction coefficient σ increases, the effective 

radius decreases, and in the limit at σ → ∞ and Re → 0 

the detector does not integrate (average) over space. For 

convenience, the effect associated with averaging of 
radiation over finite detector's FOV will be referred to 
as the geometric averaging. 

 

 
FIG. 1. Schematic of the geometric averaging effect 
caused by the finite detector’s FOV. 

This effect depends on two scaling parameters: the 
horizontal size of a pixel δx and the distance 
L = Re sin Θ ≤ h tanΘ. At L ≤ δx/2, the detector 
receives the radiation scattered within a single pixel, so 
the finiteness of the detector’s FOV has no smoothing 
(averaging) effect on the random process F(x, Ht, Θ). 
At L >> δx, many pixels fall within the detector's FOV, 
so the geometric averaging smoothes out the random 
process F(x, Ht, Θ) and makes it weakly sensitive to 
cloud inhomogeneities on the spatial scales r ∼ δx; in 
other words, F(x, Ht, Θ) in this case weakly depends  
on small-scale cloud inhomogeneities and thus is a 
smoother function than at L ≤ δx/2.  

Barker3 has studied the geometric averaging 
effect on the spatial spectra of albedo calculated for 
the detector located at some height above the cloud 
top. He has claimed that the geometric averaging 
effect does not explain the presence of the scale break 
in the spatial spectrum of albedo and its absence for 
the reflectance at 5°, F(x, Ht, 5°), in the case when 
the reflected radiation field is calculated strictly at 
the cloud top height. Barker argues that the 
distribution of distances between the points of photon 
entry and exit is practically identical for albedo and 
F(x, Ht, 5°). This argument seems to be 
unconvincing, for it remains unclear how the identity 
of the distributions of distances between the points of 
photon entry and exit is related to the geometric 
averaging effect. Moreover, the author does not 
consider the geometric averaging in the case when the 
detector is located at the cloud top/bottom boundary 
or inside the cloud, thus implicitly assuming that the 
geometric averaging can be neglected in this case. 
Below we will show that the geometric averaging 
effect plays central role in physical interpretation of 
spatial spectra of the radiative field, regardless of 
whether the detector is located beyond, at the 
boundaries, or inside a cloud. 

The segment of realization of the ratio 

F(x, Ht, Θ)/ F(Ht, Θ)  calculated at the cloud top 

boundary for Θ = 10, 30, 60° and two solar zenith 
angles Θ0 = 0 and 60° is a direct illustration of the 
geometric averaging effect (Fig. 2). From here on the 
overbar denotes the average over realization of cloud 
optical depth. For h = 0.3 km and Θ = 60°, the 
maximum value Lmax = h tan60° ∼ 0.5 km, and the 
number of pixels contributing to F(x, Ht, 60°) can 
reach 20. Because of averaging over so large number of 

pixels, the ratio F(x, Ht, 60°)/ F(Ht, 60°)  is a much 

smoother function than F(x, Ht, 10°)/ F(Ht, 10°) , 

when no more than two pixels fall within the detector’s 
FOV.  

The spatial spectra of F(x, Ht, Θ) are presented in 
Fig. 3. If in each individual measurement the 
instrument receives (averages) the radiation from  
~ 10$20 pixels (Θ = 30$90°), then the small-scale 
features of the radiative field are smoothed out, and  
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the spatial spectrum of F(x, Ht, Θ) has a break at some 
characteristic scale η. Averaging over two pixels is 
insufficient to smooth F(x, Ht, 10°), and, for this  
 

reason, the scale break is not observed. The latter is in 
accord with the results by Barker,3 who found no scale 
break in the spectrum of F(x, Ht, 5°).  

 

FIG  2. A fragment of realization of the F(x, Ht, Θ)/ F(Ht, Θ)  ratio for two solar zenith angles: Θ0 = 0 (a) and 

60° (b). The wider the detector’s FOV, the smoother the behavior of the ratio. 
 

 
FIG. 3. Spatial spectra of the reflectance into cones of different angular widths Θ = 10, 30, 90°. For 10° 
reflectance, the geometric averaging has a little smoothing effect on the radiation field and causes no scale break. 
The larger Θ0, the smaller the scale η. 

 

As solar zenith angle increases from 0 to 60°, the 
characteristic scale η decreases by approximately a 
factor of two (Fig. 3). Horizontal radiative flux E, 
excited by horizontal cloud inhomogeneity, cannot 

cause such a decrease in the scale η. Because of a strong 
forward peak of the cloud scattering phase function, at 
oblique sun angles the radiation energy can be 
exchanged between, on the average, wider separated 
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pixels; therefore, with growing Θ0, the correlation 
radius of E will rather increase  (see Fig. 4a). A 
possible explanation for the η decrease might be the 
fact that at Θ0 = 0 solar radiation penetrates deeper 
into the cloud; therefore, the detector averages over a 
larger number of pixels, and the effective radius Re 
increases. To validate this explanation, the vertical 
profiles were calculated for the mean (over optical 
depth realization) upward flux inside (0 ≤ z ≤ Ht $ Hb) 
inhomogeneous clouds (Fig. 4b). It is seen that at 
z ≤ 0.24 km the mean upward flux decreases with 
increasing Θ0. Thus, as Θ0 increases from 0 to 60°, the 
effective radius does decrease, and geometric averaging 
successfully explains the decrease in the scale η. 

 

 
a 
 

 
b 

FIG. 4. Autocorrelation functions of horizontal 
transport (a) and mean upward flux for two solar 
zenith angles: Θ0 = 0 and 60° (b). 

The absence of the scale break for 5° and 10° 
reflectance allows us to assume that there is such a 
value of Θ* that F(x, Ht, Θ) has (has no) the scale 

break at Θ > Θ* (Θ < Θ*). If this speculation is 

correct, then the spatial spectrum of the zenith radiance 
I(x, 0, Ht, 0, 0) must not have a scale break. The 
random functions I(x, 0, Ht, 0, 0) were calculated for 
the spectral model (SM) with the pixel size δx = 50 m 
and for the cascade model (CM) with δx = 12.5 m. The 
spatial spectra of zenith radiance have no scale break 
(Fig. 5), what confirms our assumptions.  

 

 
FIG. 5. Spatial spectra of zenith radiance for the 
spectral (SM) and cascade (CM) models of 
stratocumulus clouds. Because of the absence of 
geometric averaging, there is no scale break. 

 

Thus, our results support the important role of the 
geometric averaging in smoothing the radiative field 
and forming the scale break: if geometric averaging is 
small or completely absent, then the spatial spectrum of 
the measured radiation field has no scale break. 

 

4. RADIATIVE SMOOTHING AND THE SCALE 

BREAK 
 

The narrower the detector’s FOV, the weaker the 
geometric averaging effect; that is why the F(x, Ht, Θ) 
spectrum for Θ ≤ 10° (Fig. 3) and, in particular, the 
spectrum of zenith radiance (Fig. 5), do not exhibit 
any scale break. The latter does not agree with the 
findings of Marshak et al.4 and Davis et al.5 Using a 
cascade model of stratocumulus clouds and the Monte 
Carlo method, they have found that the structure 
functions of the zenith radiance have the scale break. 
Referring to Wiener$Khinchin theorem for 
homogeneous and isotropic fields, they assert that the 
spatial spectrum of zenith radiance ought to have the 
scale break as well. A reader will find in these papers 
no evidences that the scale break of the spatial 
spectrum of zenith radiance has been obtained by 
numerical simulation. Nevertheless, the authors claim 
that they explained the Landsat scale break: œThe 
mechanism of this scale break is now clear: horizontal 
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radiative transport smoothes out the small-scale features 
of the underlying extinction field.B4 For this effect of 
horizontal radiation fluxes, they use the term œradiative 
smoothing.B  

The physical mechanism of the radiative smoothing 
has not been clearly defined and has been formulated only 
intuitively. The authors restrict themselves to only visual 
comparison of realizations of the zenith radiance 
calculated by Monte Carlo (MC) method and by the 
independent pixel approximation (IPA). Obviously, such 
a comparison will give no answer to the key (for their 
explanation) question: how often and why does the 
horizontal radiative flux smooth out the small-scale 
features of the radiation field. This question is not 
unreasonable, because, as known, the horizontal radiative 
transport can both decrease and, on the contrary, increase 
the amplitude of albedo fluctuations, so that albedos far 
in excess of unity may be sampled.4,10 The IPA and MC 
albedos RIPA(x) and Rlq(x) are shown in Fig. 6. A 
visual comparison shows that Rlq(x) is not a smoother 
function than RIPA(x); thus, the horizontal flux does not 
always smooth the radiative field. However, Rlq(x) has 
the scale break, whereas RIPA(x) has no (Fig. 3). Recall 
that there is no geometric averaging in IPA. 

 

 
FIG. 6. The IPA and MC albedos RIPA(x) and 
Rlq(x) as functions of the distance x (km) for solar 
zenith angle Θ0 = 60°; Rlq(x) does not appear to be a 
smoother function than RIPA(x). 
 

For zenith radiance there is no integration over the 
detector’s FOV and, hence, no geometric averaging;  
 

whereas for albedo this effect is maximum. So, it is 
unclear why do the structure functions of zenith 
radiance and albedo have the scale breaks at the same 
characteristic scale (Ref. 4, Fig. 12). The authors do 
not explain this fact.  

According to Refs. 4 and 5, the characteristic scale 

η is proportional to  ρ2 , where ρ2
 is the second 

moment of the distribution of distances between the 
points of photon entry and exit. In the diffuse 

approximation,  ρ2  is related to cloud parameters 

by the formula 
 

    ρ2  ≈ 
⎩⎪
⎨
⎪⎧h[(1 $ g)τ]$1/2 for albedo,

h for transmittance,
 (2) 

 

where h is the cloud geometric thickness, g is the 
asymmetry factor, and τ is the optical depth. For 
inhomogeneous clouds, we propose to use the mean 

(over realization) optical depth τ$ instead of τ. From 

Eq. (2) we conclude that  ρ2
 depends on the 

standard parameters h, g, and τ, determining the 

radiative transfer in inhomogeneous clouds, and is 
independent of horizontal variability of the cloud 
optical properties. Horizontal radiative fluxes,  
which supposedly define the scale η, depend primarily 
on the horizontal gradient of optical depth.  With a 
variation of the horizontal gradient of τ(x) the scale η 

changes, while  ρ2  remains the same. For this 

reason, no one-to-one relationship exists between η and 

 ρ2 , and, generally speaking,  ρ2  cannot 

determine η. This is an additional argument supporting 
the statement that the classic one-dimensional radiative 
transfer theory fails to explain physically and to 
quantify accurately the radiative effects caused by 
horizontal variability of the optical properties of real 
clouds. 

Further, according to Eq. (2), the value of 

 ρ2  does not change under linear transformation 

h′ → αh and τ′(x) → α2τ(x), and, hence, the scale 
break should occur at one and the same scale η. To 
validate this statement, the realizations of F(x, Ht, 10°), 
F(x, Ht, 30°), and albedo were calculated at the scale 
parameter α = 2.3. The corresponding spatial spectra 
are presented in Fig. 7. The most important result is 
that, in contrast to the case of α = 1, at α = 2.3  
both F(x, Ht, 10°) and F(x, Ht, 30°) have no scale 
break (see Fig. 3a). Hence, under such linear 
transformation, the spatial spectrum of F(x, Ht, 30°) 
either can (α = 1) or cannot have (α = 2.3) the scale 
break, which means that there is no conservation of the 
scale η. As to the spatial spectrum of albedo, with an 
increase of parameter α from 1 to 3, the scale η does 
not remain constant but increases from ∼ 0.4 to 
∼ 0.6 km. 
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FIG. 7. Spatial spectra of the reflectance at Θ0 = 0° and optical depths τ′ = α2τ(x) with α = 2 (a) and α = 3 (b); 
there is no scale break in the reflectance at 30°. 

 
The behavior of the spatial spectra presented in 

Figs. 3 and 7 could be explained by the geometric 
averaging effect. Maybe, with an increase in optical 
depth, the effective radius Re for the reflectance 
F(x, Ht, 30°) decreases; therefore, the detector 
averages over a smaller number of pixels, and there is 
no scale break at α = 2.3. For albedo, an increase in the 
cloud geometric thickness h possibly causes some 
increase of Re; hence, the detector averages over a 
larger number of pixels, so the scale η increases. We 
use here the words œmaybeB and œpossiblyB in order to 
emphasize a dearth of knowledge about the dependence 
of the effective radius on the detector’s FOV, geometric 
and optical properties of clouds, solar zenith angle, and 
on the surface albedo. The geometric averaging effect 
has a great potential for improving physical 
interpretations of field measurements; therefore, it 
deserves a further study. 

Our findings clearly show that the explanation of 
the scale break based on the radiative smoothing as 
well as the proposed interrelation between η and 

 ρ2  are physically incorrect. Moreover, they even 

cast doubts on the existence of the radiative smoothing 
effect itself. 

For scales less than 0.1$0.2 km, the spatial spectra 

of albedo and F(x, Ht, Θ) look like spectra of  white 
noise. Barker3 first noted this feature and explained it 
as follows: œThe white noise arises from the sensor 
responding to signals from many regions of the cloud 
that are uncorrelated with each other.B However, his 
argument fails to explain the absence of the white noise 

at α = 1  (Fig. 3=) and its presence at large mean 
optical depth (Fig. 6). We calculated the cloud 
radiative properties under discussion by the Monte 
Carlo method with relative computation error less than 

1%. The larger the cloud optical depth, the greater the 

reflectance F(x, Ht, Θ) and albedo, and, hence, the 
higher the absolute errors of computation. In optically 

thick clouds, F(x, Ht, Θ) and albedo weakly depend on 
the optical depth and increase insignificantly in 
response to its large increments. This implies that at 
α = 2.3, the small-scale (0.1$0.2 km) fluctuations of 

F(x, Ht, Θ) and albedo are comparable to the absolute 
error of computation; and because the latter is an 
uncorrelated random process, the spectrum of white 
noise is observable on these spatial scales.  

 
5. CONCLUSION 

 
The influence of geometric averaging on the spatial 

spectra of reflected radiation has been studied using 
numerical simulation technique. Our results confirm the 
widely accepted viewpoint that the geometric averaging 
effect on the reflectance spectra must be taken into 
account independently of whether the detector is 
located beyond, at the boundaries, or inside the cloud.  

If the detector receives radiation from one or two 
pixels, then it does not smooth out the spatial 
fluctuations of the radiation field so they are well 
described by the power-law spectrum without any scale 
break. Averaging over 10$20 pixels is sufficient to 
make the albedo and the reflectance smoother functions 
and to give rise to the scale break in their spatial 
spectra. This result clearly shows that multiple 
scattering and/or horizontal radiative transport, 
independent of the detector’s FOV, cannot smooth out 
the small-scale variability of the  radiative field. 

Because of the horizontal radiative transport, the 
amplitude of albedo fluctuations may increase, and the 
sampling values of albedo can exceed unity.4,10 The 
MC albedo does not appear to be a smoother function 
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than its IPA counterpart. These results, as well as the 
absence of the scale break for 10° (at larger optical 
depth) and 30° reflectance and zenith radiance, prove 
the inability of horizontal radiative fluxes to smooth 
out the radiative field and cause the scale break in its 
spectrum. Hence, our results do not confirm the 
radiative smoothing explanation of the scale break.4,5 If 
the detector is installed onboard an aircraft, the 
presence or absence of the scale break in the spatial 
spectrum of the reflected radiation can be explained by 
the geometric averaging effect. 

Evidently, the geometrical averaging effect fails to 
explain the scale break in spectra of reflected radiation, 
inferred from high spatial resolution (∼30 m) (and, 
hence, narrow FOV) Landsat data. More attention 
should be paid to the statistical explanation developed 
in Ref. 2. Probably, the causes of the scale break are 
the insufficient amount of samples and/or the 
statistical inhomogeneity of real cloud systems. 
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