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The method of kinetic identities from the statistical physics is applied to the 

problems of radiation transfer in a stochastically inhomogeneous medium. 
 

1. PREFACE 
 

The statement of the problem considered in this 
paper has resulted from our discussion with Georgii 
Aleksandrovich Titov of the well-known problem on 
violation of the light flux balance in the system "solar 
radiation $ overcast cloudiness." At that time G.A. Titov 
has been thoroughly studying the hypothesis of 
"horizontal transfer" in an aerosol stochastic medium.  
He used for that the Monte Carlo method, in which he 
was a real master.  In his Doctor's Thesis, G.A. Titov 
gave credit, as well, to a standard technique of the 
statistical physics $ direct averaging of the equations 
with random parameters, rather than their solutions. In 
parallel to the Monte Carlo method, he conceived of a 
detailed study of the "horizontal transfer" hypothesis, 
which he thought to be a necessary component of the 
problem.  Within the framework of his project, an 
effort is made by the author of this paper to apply the 
well-known approach1$3 to the situation of "radiation 
transfer equation". 

Unfortunately, we had no enough time to combine 
both these approaches.  Hopefully, I look forward to 
successful solution of this problem in the near future.  
Here I restrict my consideration to the proof that the 
method proposed in Ref. 4 is also suitable for the 
transfer equation. 
 

2. STATEMENT OF THE PROBLEM 
 

Let I(r, n | ξ) be the spectral function (with 
frequency ω as an argument) of the intensity of a beam 
passing through the point r in the direction of the unit 
vector n.  The medium is characterized by the spatial 
random functions Θ(r).  These functions can be 

presented as a standard expansion Θ(r) = ⌡⌠ dν ζ(ν) × 

× exp (iνr). It is just the parameters ζ that include the 
statistical parameters ξ specified by the problem 
content. The function Φ(ξ) (certainly, 
multidimensional) describes their distribution. The 
statistical mean of some Θ(ξ) is quite a standard relation 

Θst = ⌡⌠ Θ(ξ) Φ(ξ) dξ.  (1) 

It is essential that such a description considers ξ 
only as parameters in the transfer equation.  This means 

that the transfer equation operators effect only r and n; 

and if T̂(r, n | ξ) is such an operator, then the 

definition given by Eq. (1) holds true for T̂st. 
The transfer equation has the following form: 

I(r, n | ξ) = I(0) (r
(σ)

, n) × 

× exp 

⎣
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| r$rσ |

 dR′ χ (r $ R′n | ξ)  + 
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| r$rσ |

 dR exp 
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⎢
⎡
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⎥
⎤
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 dR′ χ (r $ R′n | ξ)  × 

× ⌡⌠ dn′ ϕ(r $ Rn, n, n′ | ξ) I(r $ Rn, n′ | ξ). (2) 

Here χ is the extinction coefficient; ϕ is the scattering 
phase function (not normalized to the scattering 

coefficient); r
(σ)(r, n) is the "boundary point"; I

(0) is 
the radiation coming into the medium from  outside. 

Below we use the following designations: x is the 

set of variables r, n; Y(x | ξ) replaces I, Y
(0)

(x) replaces 

I
(0), g(x | ξ) is used for the "Bouguer exponent";  

T̂(x | ξ) is the integral operator of Eq. (2). Then 
Eq. (2) takes the form 

Y(x | ξ) = Y(0)(x) g(x | ξ) + T̂(x | ξ) Y(x | ξ). (3) 

Next, for brevity, we assume that Y
(0)(x) is 

included in g(x | ξ).  Let us introduce one more 
function Z(x, ξ) = Y(x | ξ) Φ(ξ), the equation for which 

Z(x, ξ) = g(x | ξ) Φ(ξ) + T̂(x | ξ) Z(x, ξ) (4) 

results from  simple multiplication of Eq. (3) by Φ(ξ) 

(because T̂ is not the operator with respect to ξ). 
 

3. APPLICATION OF THE METHOD  

OF PROJECTION OPERATOR  

TO THE EQUATION OF THE FORM (4) 
 

The relation P̂ Θ(x, ξ) = Φ(ξ) ⌡⌠ dξ Θ(x, ξ) for the 

integrated (over ξ) function Θ(x, ξ) introduces the 

projection operator P̂. The function  

Z1(x, ξ) ≡ P̂ Z(x, ξ) = Φ(ξ) Yst(x) in view of Eq. (1) 
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and the definitions of Z and P̂. One more function 

Z2(x, ξ) = (1 $ P̂) Z, and certainly Z1 + Z2 = Z. 

By multiplying Eq. (4) by P̂ from left, using the 
expressions presented above, and then integrating over 
ξ, we obtain the following equation for Yst(x): 

Yst(x) = gst(x) + T̂st(x) Yst(x) + 

+ ⌡⌠ dξ T̂(x | ξ) Z2(x, ξ). (5) 

In order to exclude Z2 from Eq. (5), we apply the 

operator T̂(1 $ P̂) to Eq. (4).  As a result, the function 

H ≡ T̂Z2 arises in the left-hand side, and the first term 

in the first part turns into T̂ [g(x | ξ) $ 
$ gst(x)] Φ(ξ) ≡ α(x, ξ), while another one gives the 

sum β(x, ξ) = T̂(1 $ P̂) ΦYst and T̂(1 $ P̂) H. The 

new equation H = α + β + T̂(1 $ P̂) H relative to H 
arises, which has the following formal solution: 

H(x, ξ) = 
1

1 $ T̂ (1 $ P̂)
 [α(x, ξ) + β(x, ξ)]. 

Here the standard designation 1/Ô = Ô$1 is used for 

the operator Ô. After integration over ξ we obtain 

 ⌡⌠ dξ T̂ Z2 ≡ Ψ(x) = ⌡⌠ dξ 
1

1 $ T̂ (1 $ P̂)
 {T̂(g(x | ξ) $ 

$ gst(x)) Φ(ξ) + T̂ (1 $ P̂) T̂ Φ(ξ) Yst(x). (6) 

Certainly, such transformations of Eq. (6) are 

needed, after which, first, P̂ will not directly enter into 

the equation and, second, the role of T̂(x | ξ) will be 
"minimal." Some identities for the operators turn out to 
be useful here. 

Thus for the operator 

Â (x, ξ) 
1

1 + T̂ P̂
 Â Φ = 

= Â Φ $ T̂ Φ 
1

1 + T̂st

 ⌡⌠ Â Φ dξ. (7) 

Really, the series 
1

1 + T̂ P̂
 = 1 $ T̂ P̂ + T̂ P̂ T̂ P̂ $ T̂ P̂ T̂ P̂ T̂ P̂ + ... 

exists, because in our case with the transfer equation ||T̂

|| < 1, and the eigenvalue of the operator P̂ is ± 1. The 

definition of P̂ implies the equality (T̂ P̂)m Â Φ = 

= T̂ Φ T̂m$1
st  ⌡⌠ Â Φ dξ for integer m ≥ 1; and the 

following summation of the series gives Eq. (7).  After 

integration of Eq. (7) over ξ, the integral⌡⌠ Â Φ dξ 

could be written in the right-hand side with the factor 

1 $ [T̂st/(1 + T̂st)] = 1/(1 + T̂st), because only one 

operator T̂st works here. Therefore, 

⌡⌠ 
1

1 + T̂ P̂
 Â Φ(ξ) dξ = 

1

1 + T̂st

 ⌡⌠ Â Φ dξ. (8) 

Then, it can be noted that there exists the operator 
l being a solution of the equivalent equations 

M̂ = T̂ + T̂ 
1

1 + T̂ P̂
 M̂,   M̂ = T̂ + M̂ 

1

1 + T̂ P̂
 T̂ (9) 

that enters (as M̂E) into the general definition 

1

Ĉ $ Ê
 = 

1

Ĉ
 
⎝
⎛

⎠
⎞1 + M̂E 

1

Ĉ
 .  (10) 

Similar identities are very popular in 
transformations of operators of the "resolvent" type 
(see, for example, Ref. 3). 

Direct substitution indicates that Eqs. (9) and 

(10) (with our operators Ĉ and Ê) satisfy the relation 

M̂ = T̂ + T̂ 
1

1 + T̂ P̂ $ T̂
 T̂. 

The latter expression, Eqs. (7) and (8), and the 

definition of P̂ give the following chain for the operator 

acting (under the ⌡⌠ d ξ... sign) upon Yst from Eq. (6): 

1

1 $ T̂ (1 $ P̂)
 T̂ (1 $ P̂) T̂ Φ = T̂ (1 $ P̂)× 

× 
1

1 $ T̂ (1 $ P̂)
 T̂ Φ = T 

1

1 + T̂ P̂ $ T̂
 T̂ Φ $ 

$ TΦ ⌡⌠ dξ 
1

1 + T̂ P̂ $ T̂
 T̂ Φ = (M̂ $ T̂) Φ $ 

$ T̂ Φ ⌡⌠ dξ (T̂ $1
M̂ $ 1) Φ = M̂ Φ $ 

$ T̂Φ ⌡⌠ dξ 
⎝
⎛

⎠
⎞Φ + 

1

1 + T̂ P̂
 M̂ Φ  = 

= M̂ Φ $ T̂ Φ 
1

1 + T̂st

 ⌡⌠ M̂ Φ dξ $ T̂ Φ. 

After integration over ξ the corresponding term of 
Ψ takes the form 

1

1 + T̂st

 ⌡⌠ M̂ Φ dξ Yst $ T̂st Yst. (11) 

The integral from Eq. (11) transforms with 
involving the solution (9) in the form of the series 

M̂ Φ = (Â0 + Â1 + Â2 + ...) Φ;    Â0 ≡ T̂, 

Â1 = T̂ 
1

1 + T̂ P̂
 Â0,    Â2 = T̂ 

1

1 + T̂ P̂
 Â1, ... . 

Expression (7) gives rise to the chain Â0 Φ = T̂ Φ: 

Â1 Φ = T̂ Â0 Φ $ T̂2 Φ 
1

1 + T̂st

 g0, g0 = ⌡⌠ Â0 Φ dξ = T̂st, 

Â2 Φ = T̂ Â1 Φ $ T̂2 Φ 
1

1 + T̂st

 g1,  g1 = ⌡⌠ Â1 Φ dξ, 

with the obvious consequence that 
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M̂ Φ $ T̂ Φ = T̂ M̂ Φ $ T̂2 Φ 
1

1 + T̂st

 X̂. (12) 

Let us introduce X̂m = ⌡⌠ dξ T̂m M̂ Φ with the integer 

m, and then the sought parameter is X0 ≡ X. 
It is clear that integration of Eq. (12) over ξ will 

not give the equation for X, because the unknown X1 
will also enter into it. Therefore, the standard 

procedure is necessary: equation (12) is multiplied by T̂ 
to the corresponding power (formally, starting from the 
first power) from the left and is integrated over ξ; the 
result will be the following system: 

X̂ $ T̂st = X̂1 $ (T̂2)st 
1

1 + T̂st

 X̂, 

X̂1 $ (T̂2)st = X̂2 $ (T̂3)st 
1

1 + T̂st

 X̂, 

X̂2 $ (T̂3)st = X̂3 $ (T̂4)st 
1

1 + T̂st

 X̂. 

After term-by-term summation the operators X̂m 
with m ≥ 1 disappear, thus yielding the following 
expression: 

X̂ $ [T̂st + (T̂2)st + (T̂3)st + ...] = 

= $ [(T̂2)st + (T̂3)st + (T̂4)st + ...] 
1

1 + T̂st

 X̂. 

The expressions in the square brackets can be 
transformed to 

⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st 
,   

⎝
⎛

⎠
⎞T̂

2 
1

1 $ T̂
 

st 
. 

As a result, we have the following equation for X with 
the formal solution 

X̂ ≡ ⌡⌠ M̂ Φ dξ = 
1

1 + 
⎝
⎛

⎠
⎞T̂

2 
1

1 $ T̂
 

st

 
1

1 + T̂st

 × 

× 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 . 

Now the operator acting upon Yst in Eq. (11) is as 
follows: 

1

1 + T̂st

 
1

1 + 
⎝
⎛

⎠
⎞T̂

2 
1

1 $ T̂
 

st

 
1

1 + T̂st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 $ T̂st . 

Using c and ê for denominators in the first two 

expressions, we obtain ĉ
$1 ê$1 = (ec)$1, which 

simplifies, to a certain extent, the latter expression 

1

1 + T̂st + 
⎝
⎛

⎠
⎞T̂

2 
1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 $ T̂st . 

Writing finally the denominator of the first factor 
under the common sign (...)st and reconstructing Yst, 
we reduce the considered term of Eq. (6) to the form 

1

⎝
⎛

⎠
⎞1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 Yst $ T̂st Yst. 

In a similar way we can transform the another 
term of Eq. (6) and finally obtain 

Ψ(x) = 
1

⎝
⎛

⎠
⎞1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 Yst + 

+ 
1

⎝
⎛

⎠
⎞1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 (g $ gst)  

st

 $ T̂st Yst . (13) 

Equations (5), (6), and (13) give the expression 

Yst = Y
∼
 + T̂st Yst + L̂ Yst , (14) 

in which 

L̂ = 
1

⎝
⎛

⎠
⎞1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 

st

 $ T̂st ≡ K̂ $ T̂st , (15) 

Y
∼
 = gst + 

1

⎝
⎛

⎠
⎞1

1 $ T̂
 

st

 
⎝
⎛

⎠
⎞T̂ 

1

1 $ T̂
 (g $ gst)  

st

 . (16) 

 

4. DISCUSSION 
 

Equations (14) $ (16), which are exact in their 
mathematical structure, are the identities having only 
the form of equations.  This can be easily checked by 

involving the formal solution Y = (1/(1 $ T̂)) g to 
equation (3). As usually, due to this circumstance, we 
should be very careful when doing identical 
simplifications such as Eqs. (14) $ (16).  Otherwise we 
may finally obtain a trivial equality (for example, such 
as Yst = Yst). This is generally typical for the situation, 
when an equation is constructed from a formally known 
solution. However, the aim of this seemingly "backward 
step" is also obvious: it creates the prerequisites for 
approximations based on the corresponding physical 
and mathematical grounds. Here they must be oriented, 
to a certain degree, to nullifying the operator given by 
Eq. (15) and the second term in Eq. (16), when the 
medium is not stochastic. Therefore, the problem is to 
find the form (14), which is most rational for such an 
action. The central idea is quite standard: 
approximations in the additional terms arising after 
averaging $ compare Eqs. (3) and (14) $ will prove to 
be the exact identities "partially corrected" by 
iterations. 

Let us describe briefly these quite clear reasonings, 
which can be treated as prerequisites for the following 
approximations. 
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Consider first the condition ||T̂|| < 1. As known, 
this inequality implies the principle fact of existence of 
absorption (though very small) at any frequency. It 
guarantees the convergence of the Neumann series for 
the transfer equation. 

Second, we can, as usually, orient to separation 
of correlations, especially as the power increases in 
the expressions such as the "central moment". 
Therefore, for the expansion parameter ε, which is the 
characteristic of statistical fluctuations, we can write 

the following estimate: ε < ||T̂ $ T̂st||. It also holds 
true for other similar constructions, for example  
|g $ gst| = 0(ε). 

Third, by applying the "statistics of photons" 
(using the terminology of the Monte Carlo method) we 
undoubtedly can strengthen the above-considered 
possibility of a simplification. This is possible because 
the "statistics of photons" smooths out the stochastic 
 

properties of the medium. One simply should keep in 

mind that powers of T̂ describe the multiple scattering. 
The factor, for which we will use the term "double 

protection", should act as an additional "smallness 
parameter".  The meaning of this term is very simple $ 

in expressions like Â ν (where Â is an operator and ν is 

a function), both Â and ν vanish in the absence of 
stochastic properties of a medium.  It is easy to check 
that all components of Eq. (14) have such a "double 
protection". 
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