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Errors of the autocollimation method as applied to measuring a curvature 
radius of spherical optical surfaces with an interferometer are analyzed.  A 
precision measurement technique (ΔR/R ≈ 10$5) is proposed. It is based on 
iterative physical refinement of a test piece position by results of interferogram 
processing.  A relation between the measurement error and characteristics of a 
digital interferometer is obtained. 

 
The technique to measure a curvature radius with 

an autocollimation microscope1 is well-known.  It 
consists in measurement of a test piece displacement 
between two positions (Fig. 1).  The first reading is 
taken as the test piece vertex is in the microscope 1 
reticle image plane.  The second reading is taken at 
confocal arrangement of the test piece. Both reflections 
give an autocollimation image.  Just this causes the 
name of this technique. 

 

 
FIG. 1. Geometry of the autocollimation technique to 
measure the curvature radius: an instrument 
controlling adjustments (1); a test piece (2). 
 

The classical technique utilizes a traditional reticle 
illuminated with an autocollimation eyepiece to 
indicate a test piece position.2  Most interesting seems 
the possibility to control adjustments with a Twyman-
Green interferometer or a laser interferometer by the 
Fizeau scheme with the external focus F′(Fig. 2).  In 
this case, instrument 1 (Fig. 2) is the corresponding 
interferometer.  In Ref. 3, the position of the test piece 
with a vertex at the focus is named the cat’s eye 
position.  For brevity, here we refer to it as a point 
position, and the second one is referred to as a confocal 
position.  The point and confocal positions of the test 
piece correspond to most straight, parallel, and 
equidistant interference fringes.  As compared to the 

autocollimation microscope, the interference scheme is 
more sensitive. 

 

 
FIG. 2. Optical arrangement of the interferometer by 
the Fizeau scheme: laser (1), widener of a laser  
beam (2), beamsplitter (3), illuminating objective lens 
(4), aplanatic meniscus (5), test piece (6),  
beam-turning mirror (7), TV camera (8), video 
controller (9), interferogram processing device (10); F′ 
is the interferometer focus. 

 
Errors of the interference autocollimation method 

are analyzed in detail in Ref. 3.  The error of radius 
measurements is shown there to be ~ 0.01%.  However, 
this accuracy is insufficient in some engineering 
problems.  For example, the measurement error in the 
attestation of sample glasses1 and the testing of 
spherical bearings of current gyroscopic systems4 must 
be 0.001% and even less.  The largest contribution into 
the error of these measurements is made by the Abbe 
error2 and the error of defocusing. 

The Abbe error ΔRA is caused by displacement of 
the instrument axis and the length to be measured.  
The latter in this case is the axis passing through the 
test piece positions or the interferometer optical axis 
(Fig. 3).  This error can be corrected for by use of 
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either two measurement scales positioned on different 
sides from the interferometer or such instruments that 
can be structurally arranged on the interferometer 
optical axis, e.g., a laser meter of displacements 
(Fig. 3b). 

 

 
FIG. 3. The radius measurement error ΔRA due to 
violation of the Abbe principle: test piece (1); test 
piece holder mounted through a bracket to a  
meter (2); meter with the measurement scale (3); laser 
meter of displacements (4). 

 

The defocusing error stems from determination of 
the test piece position by the best interference pattern. 
The best interference pattern may contain some residual 
distortions of interference fringes corresponding to 
displacement of the wave front from the plane of best 
adjustment, ΔWres. The parameter ΔWres can be 
interpreted as wave aberration.  Then, according to 
Ref. 6, we can write 

ΔWres = ΔLres ⋅ 0.125 (Dt.p/Rt.p)2,  (1) 

where Lres is defocusing; Dt.p. is the light diameter of 
the test piece; Rt.p. is its curvature radius. 

The value ΔRres = 2ΔLres corresponds to the error 
in determination of the test piece curvature radius; 
ΔWres is the error in determination of the best 
interference pattern. 

It is rather evident that only high-quality test 
pieces (from the viewpoint of surface shape) can be 
subjected to precision measurements of the curvature 
radius in view of minimization of the influence of 
surface shape deviations from the reference ΔWt.p on 
ΔWres. 

As shown in Ref. 5, ΔWres can reach rather small 
values in the Fizeau interferometer at significantly high 
Wab because of aberration subtraction.  This is not true 
for a position of point reflection.  Since mirror 
reflection of the object wavefront is observed in this 
case, wave aberration doubling occurs at non-symmetric 
Wab in the interference equation.  This requires a 
specific approach to be used in selection and 
manufacture of components of the interferometer 
illuminating arm (see Fig. 1). 

Reference 3 considers the situation, when the test 
piece positions are adjusted visually, but ΔWres can be 
determined from the results of digital processing of 
interferograms.  Then the value of ΔRres can be found 
from Eq. (1) with known Dt.p/Rt.p.  Thus, this 
component of the radius measurement error can be 
reduced. 

For high-quality correction, relative apertures of 
the reference surface Dref/Rref should be known 
accurate to ∼ 0.1 $ 0.2% (Ref. 3). 

Since 
d(Dref
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Rref
, we can 

write 

 

dDref
 

Dref
 ≤ 0.1% ,   

 

dRref
 

Rref
 ≤ 0.1% .  (2) 

Fulfillment of conditions (2) is quite problematic, 
especially as for the value of dDref/Dref . 

The way out of this problem is not to correct 
numerically the test piece position in the plane of best 
adjustment using a calculated value of ΔWres, but 
eliminate ΔWres sequentially by physical displacement 
of the test piece until it reaches the position of best 
adjustment. Thus, information about the current state 
of the analyzed wavefront must serve as an initial one 
when deciding to generate a feedback signal for a 
device moving the test piece. 

Certainly, this technique is time and 
combinationally expensive.  However, it permits one to 
obtain good results.  To speed up the convergence 
process, one can use the following: 

$ interpolation of the curve ΔWres(l), where l is a 
displacement from a certain initial point, and 
determination of its minimum; 

$ iteration procedure of sequential determination 
of ΔRres = ΔRres(ΔWres) with the use of relation (1) at 
every step. 

Since random factors (e.g., photometry noise), 
besides test piece displacement, influence the 
interference pattern, it is expedient to take the rms 
deviation of the wavefront Wrms as a criterion for 
estimation of the test piece position.  This is also 
expedient from the viewpoint of result resistance to 
random factors. 

According to Ref. 6, within the Strehl criterion 
applicability domain, we can write 
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where Wij are the coefficients of serial expansion of the 
wave aberration; they correspond to defocusing (W20), 
spherical aberration (W40), wavefront tilt (W11), coma 
(W31), and astigmatism (W22). 

It is clear from Eq. (3) that defocusing can 
partially compensate only for spherical aberration and 
astigmatism, which possess mirror symmetry with 
respect to the instrument optical axis. 

Coma can be partially reduced (rebalanced) only 
due to wavefront tilt.  Just this operation is performed 
at adjustment of the reference meniscus position at 
point reflection from the test piece.  Thus, coma is the 
most unpleasant aberration in the interferometric 
system for measuring radii.  So, in the further analysis, 
we restrict ourselves to the situation, when coma and 
wavefront tilt are present in the interferometer.  In the 

plane of best adjustment, Wrms takes the value Wopt
rms.  

Coma in this case is partially compensated for due to 
the tilt.  According to Ref. 6, the tilt is optimal if 

W11 = $2W31/3 .  (4) 

Substituting Eq. (4) into Eq. (3) for W20 = 0, we 
obtain the following expression for coma: 

(Wopt
rms)

2 = 
W2

 31

72
 = 

λ2

m2 .  (5) 

Here m is an integer number characterizing the residual 
aberration in fractions of λ. 

Assume that Wij are small enough.  Then values of 
these coefficients, except for W20, vary not widely at 
slight defocusing of the test piece.  Consequently the 

aberration W drms of the wavefront defocused from the 

optimal one can be written in the form 

(W drms)
2 = 

W2
 20

12
 + 

W2
 31

72
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Suppose that the interferogram processing system 
distinguishes variations of the rms deviation 

ΔWrms = (Wopt
rms $ W drms) = 

λ

n
 , 

where n is an integer number characterizing the 
accuracy of the processing system in fractions of λ.  
 

Then under the condition λ/n << Wopt
rms we can write 

W20 ≈ λ 24/(nm) .  (7) 

According to Eq. (1), apply Eq. (7) to 
determination of the radius measurement error under 
aberrations Wrms of the wavefront reflected from the 
test piece: 

ΔR = 16 

Rt.p 

Dt.p
 λ 24/(nm)

 = 16 

Rt.p 

Dt.p
 

24Wrms ΔWrms  .  (8) 

Relation (8) can be used in imposing requirements 
to technical systems when designing interferometric 
systems for precision measurements of curvature radii. 

It can be derived from Eq. (8) that the relative 
error in measurements by the above-described technique 
is ΔR/R ≤ 6 ⋅ 10$5 for spherical surfaces with 
Rt.p ≈ 10 mm with an interferometer with the aperture 
Dt.p/Rt.p = 1:1, e.g., for residual aberrations 
Wrms ≤ λ/40 and at the processing system error 
Wrms ≤ λ/200. 

Tolerances for values of residual aberrations and 
coma can be specified the following based on Eq. (3): 

W40 ≤ λ/4 ,   W31 ≤ λ/13 . 

These requirements can be satisfied due to very 
careful selection of all optical components and, first of 
all, objective lenses. 
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