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We propose in this paper a new approach to solution of the inverse problem as 
applied to thermal sounding of the atmosphere.  The approach is based on 
application of the Green’s function to the regularized, by Tikhonov method, 
integro-differential equation.  It is tested by solving a closed numerical model 
problem and then comparing the result with that obtained by classical Tikhonov 
method.  It is noted that the approach provides a higher stability of the 
regularized solution.  The data obtained with the HIRS/2 device (NOAA 
satellite) have been processed using this approach. 

 

STATEMENT OF THE INVERSE PROBLEM 

 

The equation of radiation transfer  is the basic 
instrument to relate the measured intensity of the 
outgoing radiation (IOR) to the temperature 
distribution in the Earth’s atmosphere. The expression 
for IOR at the upper boundary of the atmosphere 
(assume that there is no extinction and transformation 
of radiation along the path from the upper boundary of 
the atmosphere to a satellite) can be presented in the 
following form1$14: 
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ν
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ν
(T(h0))P(h0, H, μ) +  

+ ⌡⌠
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H
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ν
(T(z)) 
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 dz + (1 $ δ

ν
)I 

ν

↓
,  (1) 

where ν is the center of the spectral channel; δ
ν
 is the 

surface emissivity (blackbody emissivity δ
ν
 = 1); 

μ = 1/cosϕ, ϕ is the angle measured from the nadir 
direction; P is the transmittance of the atmospheric 
layer (z $ H) in the direction of ϕ; B

ν
 is the Plank 

function at the given channel frequency and 
temperature T; h0 is the altitude of the lower 
atmospheric level considered (ground level h0 = 0 or 
the cloud level); H is the altitude of the upper 
boundary of the atmosphere (in our problem it is taken 

to be H = 100 km); I
ν

↓
 is the intensity of radiation 

reflected from the Earth's surface. 
The Plank function at the frequency ν and 

temperature T is determined by the equation 

B
ν
(T) = 1.1910659⋅10$5

 ν3/[exp (1.438833ν/T) $ 1] ,  

 (2) 

where ν is the wave number, in cm$1. 
The transmission of the atmospheric layer between 

the levels z and H is described by the expression 

P(z,H,μ) = exp 

⎝
⎜
⎛

⎠
⎟
⎞

$ ⌡⌠
z

H

 dz′ ∑
j = 1

M

 Kj(ν,T(z′)) ρj(z′) Q(z′,μ)  .  

 (3) 

Here Kj is the absorption coefficient that is determined 
by absorption by atmospheric gases with concentrations 
ρj and by the continuos absorption by the H2O; Q is 
the path function accounting for the Earth’s surface 
curvature at angular measurements, 

Q(z′, μ) = 
μ(R + z′)

(R + z′)2μ2 $ (R + Hs)2(μ2 $ 1)
 , 

Hs ≤ z′ ≤ 0 , 

Hs is the flight altitude of a satellite. 
The atmospheric absorption is caused by light 

absorption by such gases as H2O, CO2, O3, and others.  
Absorption spectra of these gases are shown in Figs. 1 
and 2. 

 

 

 

FIG. 1. Spectral channels of the HIRS/2 radiometers 
and the CO2 transmission spectrum for the midlatitude 
summer meteorological model. 
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FIG. 2. Atmospheric transmission spectrum for the 
midlatitude summer model of the atmosphere in the 
region of spectral channels 1$7 of the HIRS/2 
radiometer. 
 

Each spectral channel of the HIRS device has its 
own spectral instrumental function A(ν), therefore, in 
the general case the measured parameter may be written 
in the following form: 

J
ν
(μ) = ⌡⌠

0

∞

 A(ν $ ν′) I
ν
(μ) dν . (4) 

To determine the temperature profile of the 
atmosphere, most suitable channels of HIRS/2 are 
channels 1$7 (14.95$13.34 μm) coinciding with the  
15-μm absorption band of CO2.  Figures 3 and 4 
demonstrate the spectral dependence of the IOR, in 
mW/(m2⋅sr⋅cm$1), for the channels 1$7 and the 
altitude dependence of the kernel of the integral 
equation (1). When solving the problem of thermal 
sounding of the atmosphere, the carbon dioxide is 
normally considered as a homogeneously mixed gas 
with known concentration. 

 

 

 

FIG. 3. Spectrum of the outgoing radiation for the 
system œunderlying surface + atmosphereB for the 
meteorological models of midlatitude summer (1) and 
winter (2) as compared to the Earth’s outgoing 
radiation for summer (3) and winter (4). 
 

In Eq. (1) it is assumed that δ
ν
 = 1, i.e. the 

underlying surface is considered as a blackbody. The 
third term vanishes in this approximation.  The 
approximation δ

ν
 = 1 is true to a high accuracy for water 

surface. For land it is violated, i.e. δ
ν
 < 1. In addition, 

the spectral dependence of the emissivity δ
ν
 is different 

for different underlying surfaces. All the above-said 
significantly complicates solution of the inverse 
problem of thermal sounding (TSP) over land. In fact, 
separate problem on determining the temperature of the 
underlying surface and its emissivity δ

ν
 is to be solved. 

In this paper, we do not consider this problem.  For 
this reason, we assume, hereinafter, δ

ν
 = 1. 

 

 

a 

 

b 

FIG. 4. Weighting functions of the HIRS/2 
radiometer for the spectral channels 1$7 and two 
meteorological models. 
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Thus, the initial equation for reconstruction of the 
temperature profile under clear sky conditions in the 
atmosphere is 

I
ν
(μ) = B

ν
(T(h0))P(h0, H, μ) + 

+ ⌡⌠
h0

H

 B
ν
(T(z)) 

dP
ν
(z, H, μ)

dz
 dz .  (5) 

Equation (5) can be reduced to the integral 
Fredholm equation of the first kind 

⌡⌠
a

b

 K(ν, s) y(s) ds = f(ν) ,  (6) 

where 

f(ν) = I
ν
(μ) $ B

ν
(T(h0))P(h0, H, μ) ; 

h0 = a = 0 ; b = H ; 

K(ν, s) = 
d
ds

 P(s, H, μ) ;   y(s) = B
ν
(T(s)) . 

Let us describe the problems arising, when solving 
the TSP. 

1. The account of the out-of-integral terms in 
Eq. (1) responsible for the emission of the underlying 
surface (US) (Figure 3 compares the outgoing radiation 
of the system œUS + atmosphereœ (curves 1 and 2) 
with the US outgoing radiation (curves 3 and 4)), 
including thermal radiation reflected from the Earth's 
surface. 

2. Detection of clouds within the device's field of 
view, determination of the cloud type, and taking them 
into account.  This is  necessary, because with clouds 
the first and third terms in Eq. (1) are determined by 
the radiation coming from clouds, rather than the 
Earth's surface.  In this case, the parameters to be 
known are the altitude of a cloud, its type, emissivity, 
etc. 

3. Inadequacy of the optical model of the 
atmosphere to the real situation during measurements.  
The kernel of the integral equation is calculated for 
some model situation in the atmosphere.  We can 
conditionally make some refinements of the kernel to 
adjust it to, for example, a season and, thus, to allow 
for the statistical information about variations of the 
corresponding parameters in different seasons.  Of 
course, it is impossible to take into account any real 
situation in relation to that wide list of the parameters 
determining the optical model.  The only assumption, 
which is supported by many evidences,3 is here the 
spatiotemporal stability of the CO2 content. 

Note, that the problem of thermal sounding is the 
ill-posed problem.  The conditionality number for the 
matrix of the system of linear algebraic equations, to 
which the integral equation is reduced, is equal to  
 

≈ 1010.  That  large value indicates that the problem is 
ill-posed, i.e., it is very sensitive to infinitesimal errors 
in the right-hand side of the equation and its parts. 

Since Eq. (6) is significantly ill-posed, it is 
usually solved with the use of Tikhonov regularization 

method. Therefore, let us consider briefly the Tikhonov 

method of solution and the new approach based on the 
Green’s functions we propose in this paper. 

 
TIKHONOV REGULARIZATION METHOD 

 
Let us consider the Tikhonov regularization 

method as applied to solution of the Fredholm integral 
equation of the first kind15: 

Ay = ⌡⌠
a

b

 K(x, s) y(s) ds = f(x) , c ≤ x ≤ d  (7) 

(the kernel of Eq. (7), K(x, s), is assumed real and 
continuous function on the rectangle {a ≤ s ≤ b, 
c ≤ x ≤ d}). 

The Euler equation for the extremum problem 

Φ
α
[y

α
, f] = inf

y ∈ Y
[y, f] , 

where 

Φ
α
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, f] = ρ(Ay, f) + α 
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⎦
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ds

2

 ds , 

has the following form: 

α[y
α
(t) $ qy

α
″(t)] + 

⌡
⌠

a

b

 
 
R(t, s) y

α
(t) ds = F(t) ; 

a ≤ t ≤ b ,  (8) 

where 

R(t,s) = R(s,t) = ⌡⌠
c

d

 K(x, t) K(x, s) dx ; 

F(t) = ⌡⌠
c

d

 K(x, t) f(x) dx . 

Thus, one should solve Eq. (8) instead of the ill-

posed equation of the first kind (7). 

The main problem in the Tikhonov regularization 

method is how to choose the proper regularization 

parameter which gives the optimal solution. 

The simplest way to determine this parameter is 

the trial-and-error method (or the exhaustive search), 

when the discrepancies of the following form 
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δ = 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
a

b

 {Ay
α
 $ f }2 dx

1/2

 = ρf 

(Ay, f)   (9) 

are first calculated for the monotonically decreasing 
sequence of the regularization parameters 

α1 > α2 > ... > αn (for example, α1 = 100, α2 = 10$1, 
α3 = 10$2, ...). The parameter, which makes the 
discrepancy (9) minimal, is chosen as the best result. 

There are many other criteria for making choice of 

the regularization parameter with the corresponding 

algorithms described in Refs. 16 and 17. 
 
METHOD OF THE GREEN’S FUNCTIONS 

 

Some problems may arise in numerical realization 

of the integro-differential equation (8) because of the 

algebraization of the second derivative needed.  There 

exist several schemes based on finite differences 

technique, but the use of those may lead to instability 

of a solution.  To overcome this problem, let us use the 

Green’s method and solve the equation.  As a result, we 

obtain the following equation for solution of the 

problem of thermal sounding instead of the Eq. (8): 

⌡⌠
0

1

 K1(t, t′) y(t′) dt′ + αy(t) = f1(t, α, C1, C2) ,  (10) 

where 

K1(t, t′) = ⌡⌠
0

1

 K
∼
(t″, t) G(t″, t′) dt″ ;  (11) 

f1(t,α,C1,C2) = ⌡⌠
0

1

 f
∼
(t″)G(t″, t) dt″ + αy0(t,C1,C2) ,  (12) 

K
∼
(t, z) = (d $ c) (b $ a) × 

× ⌡⌠
0

1

 K(x(t′), s(t)) K(x(t′), s(z)) dt′; 

f
∼
(t) = (d $ c) ⌡⌠

0

1

 K(x(t′), s(t)) f(x(t′)) dt′; 

x(t) = c + (d $ c)t ;    s(z) = a + (b $ a)z ; 

G(x, y) is the Green function: 

G(x, z) = 

⎩⎪
⎨
⎪⎧

1
2(1 $ e2)

 (ez $ e2$z) (ex $ e$x),  0 ≤ x ≤ z,

 
1

2(1 $ e2)
 (ez $ e$z) (ex $ e2$x), z ≤ x ≤ 1 .

  

(13) 

The function y0 is the solution of the homogeneous 
equation 

y0(t, α, C1, C2) = C1 et + C2 e$t .  (14) 

The constants C1 and C2 can be found from the 
boundary conditions: 

a)  y
t = 0

 = A0;   y
t = 1

 = A1 or  

b)  y′
t = 0

 = B0;   y′
t = 1

 = B1 . 

Equation (10) is the Fredholm integral equation of 
the second kind.  It can be easily solved numerically.17  
The approximate boundary conditions can be chosen 
from a meteorological model corresponding to the 
season. 

 
NUMERICAL EXPERIMENT 

 
There exit two schemes to reconstruct the 

atmospheric temperature. The one that is based on 
expansion of the Plank function into a series over 
temperature relative to some reference profile.  The 
solution in this scheme is the deviation of temperature 
from the reference profile.  In the second scheme, the 
unknown parameter is the Plank function itself.  Then 
the obtained Plank function is used for calculating 
temperature  by Eq. (2).  Our research, as well as the 
results from literature1,3,4,6$8 indicate that the second 
scheme is preferable. 

We solved the model problem in the following 
way.  First, we calculated the œmeasuredB IOR Iν(μ) 
by Eq. (5), and then it was distorted by a random 
variable ε(ν) for imitating the measurement noise 

⌡⌠
a

b

 K(ν,s) y(s) ds $ f(ν) = ε(ν) . 

Then the inverse problem was solved with the use 
of the new approach for several levels of errors 
characteristic of real experiments (0.5 $ 3%). 

Figure 5 presents the temperature profiles retrieved 
from the solution of the model problem. Figure 5= 
presents the reconstructed profile of temperature Tr 
compared with the model profile T0 (midlatitude 
summer) at the error of 0.5%, while Fig. 5b shows the 
same profiles at the 3-% error. 

Analysis of Fig. 5 shows how unstable is the model 
problem to experimental errors.  The errors of even 
0.5% level lead to distortions in the reconstructed 
temperature profile (ΔT = 2 K), while the errors of 3% 
result in a more significant distortion of the 
temperature profile (the maximum error ΔT reaches 
13 K).  It is known from literature, that the level of 
errors in IOR measurements does not exceed 1%.  The 
results of modeling show that, if the physical 
uncertainties described by the terms out of the integral 
are taken into account most efficiently, then we might 
expect to achieve a suitable accuracy in temperature 
profile reconstruction with this level of measurement 
errors. 
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FIG. 5. Temperature profiles retrieved from solution of 
the model problem: reconstructed temperature profile Tr 

as compared with the model profile T0 (midlatitude 
summer) with errors at the level of 0.5% (a); the same 
but with errors at the level of 3% (b). 

 

Let us consider now the errors resulting from 
uncertain determination of the land emissivity. 

Figure 6 gives the example of reconstruction of 
temperature profiles at different levels of errors in 
determination of the US temperature.  As seen, 
underestimation of the US temperature does not lead to 
significant errors, while overestimation may grossly 
change the reconstructed profile relative to the exact 
one. However, this result does not guarantee that the 
same tendency (different errors depending on whether 
the US temperature is underestimated or overestimated) 
will be observed in practice.  Therefore, we should 
consider the maximum obtained value as an obtained 
error. As seen, the error of reconstruction of the 
temperature profile is below 1° (at the altitude of 
7.5 km).  And only at the ground level it reaches 2°. 

 

 
FIG. 6. Temperature profiles reconstructed at different 
values of errors in estimation of the underlying surface 
temperature (the average value is 295 K). 
 

Figure 7 illustrates the influence of errors in the 
kernel of the integral equation (they are caused by 
systematic errors in the spectroscopic parameters) to the 
accuracy of the temperature profile reconstruction. 

 

 

 
FIG. 7. An example of influence of spectroscopic 
errors upon reconstruction of the temperature profile 
in the numerical experiments: the exact profile (solid 
curve); the reconstructed profile with 5-% errors in 
the kernel and the exact right-hand side (dashed line 
with circles); the reconstructed profile with the 
exact kernel and 0.5-% error in the right-hand side 
(dashed curve). 
 

PROCESSING OF THE EXPERIMENTAL DATA 

 
Now consider solution of the inverse problem of 

thermal sounding based on data recorded on June 1, 
1998, at the Institute of Atmospheric Optics with the 
SKANEKS station.  Figure 8 presents the OR fluxes 
measured in the nadir direction in the seven channels 
within the 15-μm absorption band of CO2 and for 
several trajectories as the satellite flew from north to  
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south (measurements in the vicinity of the city of 
Tomsk). 

 

FIG. 8. Measured OR fluxes for several flight 
trajectories from north-to-south. 
 

The land emissivity has been modeled and then 
removed from calculations. As seen from Fig. 9, the 
reconstructed values of the temperature do not 
contradict, at least to the common sense, and they 
agree with the model concepts about the thermal state 
of the atmosphere.  To make more specific conclusions, 
the comparison with data of radio sounding of the 
temperature is needed. 

 

 

FIG. 9. Temperature profiles reconstructed for several 
flight trajectories (curves 1 and 2) in the vicinity of 
Tomsk as compared to the model temperature profile 
(midlatitude summer). 
 

CONCLUSIONS 

 
1. To solve numerically the integro-differential 

equation regularized by Tikhonov method, the equation 
should first be transformed using the Green’s function.  
This procedure allows a significant increase in the 
stability of the regularized solution. 

2. The accuracy of reconstruction of the 
temperature profile depends on the error in the right-
hand side of the equation.  If the measurement error in 
the IOR is below 0.5%, then the accuracy of 
reconstruction of the temperature profile is 2°, what is 
comparable with the results obtained earlier by other 
authors.  

3. The errors in spectroscopic data influence the 
accuracy of reconstruction of the temperature profile  
 

only if the systematic shift of the kernel of the integral 
equation takes place. The error in temperature 
estimation reaches 2° at 5-% shift of the initial spectral 
data. 

4. The term of the Eq. (1) which is responsible for 
the contribution coming from the underlying surface, 
has a strong effect on the accuracy of temperature 
estimation. Variations of the US temperature within 5° 
result in the errors of estimation of the atmospheric 
temperature up to 10° at some altitudes. 
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