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Efficiency and quality of phase conjugation in a four-wave interaction of 
noncollinear diffracting light beams propagating in opposite directions are 
analyzed. Development of non-stationary (periodic) variations of the interaction 
characteristics is established. A nature of their occurrence is discussed. It is shown 
that the basic role in their development is played by self-action of light beams. The 
correctness of the obtained results is estimated with the help of spectral analysis of 
the characteristics of interacting waves. 

 
1. INTRODUCTION 

 
In Part I of the present paper development of 

convective instability in a system of counterpropagating 
noncollinear beams has been analyzed. In linear 
approximation conditions have been specified, at which 
such instability takes place. At the same time it is well 
known that in a four-wave interaction (FWI) under 
conditions of strong nonlinear interaction of light 
beams oscillating modes may appear, caused by other 
physical factors, for example, by mutual transfer of 
light energy. 

In Part II of the paper the method of numerical 
modeling analyzes the influence of physical factors 
(self-action, light energy transfer) and noncollinearity 
of beams on occurrence of absolute instability. Its 
mechanism is also studied. 

 
2. RESULTS OF NUMERICAL EXPERIMENTS 

 
In the course of numerical experiments we are 

interested in evolution of the the beam center position 
 

XC(z, t) = ⌡⌠
0

LX

 (x $ XC(0, t)) × 

 

×⏐A(z, x, t)⏐2 dx/P(z, t); 
 

P(z, t) = ⌡⌠
0

LX

 ⏐A(z, x, t)⏐2 dx, (1) 

 
quality of phase conjugation (PC) 
 

χ = ⌡⌠
0

LX

 ⎢A3 A4 ⎢
2 dx/P3 P4⏐Z = 0

 , (2) 

the maximum intensity in the beam cross section LZ 
 

Im(z, t) = max
X

⏐Am(z, x, t)⏐2, (3) 

 
and its transverse coordinate Xm(z, t), 
the power reflectance 
 
RP = P4(0, t)/[P3(0, t)], (4) 
 
and the maximum intensity reflectance 
 
RI

max
 = Im,4(0, t)/[Im,3(0, t)]. (5) 

 
Because in the course of numerical experiments it 

was established that the interaction has essentially non-
stationary character and both complex amplitudes of 
interacting waves and characteristics of interaction 
introduced above oscillated with various spatiotemporal 
scales, much attention was given to their spectral 
analysis to check the accuracy of the obtained results. 
The necessity of such checking follows from the obvious 
fact that the solution obtained on spatiotemporal grids 
with the characteristic scales τ and h adequately 
describes the solution of initial differential problem, in 
particular, under condition that in the course of 
calculations the amplitudes of spatiotemporal harmonics 
with numbers exceeding a given value N0 are all equal 
to zero. In other words, the filtering action of a 
difference grid should not distort a spectrum of the 
solution to a differential equation. With this purpose 
the numerical solution and the characteristics of 
interaction listed above were represented as 
spatiotemporal Fourier series of the form 
 

f(m) = ∑
n=0

N

 an cos 
π nhm

L
 + bn sin 

π nhm
L

 , 
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0 ≤ m ≤ M, (6) 
 
where an, bn are the expansion coefficients, M is the 
maximum number of harmonics, 2 ∗ L is the dimension 
of the appropriate area along the spatiotemporal 
expansion coordinate, and h is the step of the grid on 
it. 

Criterion of the adequate description of occurring 
processes is approaching to zero of the expansion 
coefficients an → 0 (bn → 0), starting from a fixed 
value n = N0. In this case, these coefficients are 
calculated from the formulas 
 

an(bn) = 

2
L

 ∑
m=0

N

 f(m) cos 
π nhm

L
 ⎝
⎛

⎠
⎞sin 

π nhm
L

 . (7) 

 
Here, f(m) is the value of the function in point m of 
the grid. 

Our numerical experiments were carried out for 
the following values of the parameters: 
 
γ = $ 12, $ 17, $ 20; LX = 14; LZ = 0.25; 
 
R0 = 1; Rm = 10; β = 0.05; D = 0.1. (8) 
 
Taking into account above-stated, we selected the 
following number of nodal points along the transverse 
(NX) and longitudinal (NZ) coordinates: 
 
NX = 650, NZ = 81. (9) 
 

In this case the amplitudes of harmonics with large 
numbers can be taken zero with high accuracy in the 
examined range of variations of the nonlinearity factor, 
which provided the adequate description of evolution of 
spatiotemporal spectra of interacting waves. 

The purpose of our experiments is to estimate 
contributions of beam noncollinearity, self-action, and 
energy transfer to development of oscillating modes of 
variations of the interaction characteristics. 

For numerical modeling of Eqs. (1) and (2) in 
Part I we used nonlinear conservative difference 
schemes1,2 of the second order of accuracy on 
spatiotemporal variables. 

We note that, as modeling of interaction of four 
waves propagating in the same directions has 
demonstrated, the backward energy transfer (from signal 
and backward waves to the pump waves) occurs, if the 
phase run-on exceeds 3$4 units of nonlinear lengths. In 
the situation examined here, up to γ = $10 and β = 0, 
the phase run-on does not exceed 2.5; therefore, the 
backward energy transfer affects development of free 
oscillations for the parameters (8) at | γ | > 16. 

We first analyze temporal evolution of the 
maximum intensity of the conjugated wave at the exit 
from the medium Im(0, t) (Fig. 1). 

 

In Figs. 1a, b, and c dynamics of the maximum 
intensity variations is shown for three values of the 
beam power. We note that for the least | γ |, a 
stationary value of maximum intensity is established 
after a transient process. Moreover, in an interaction of 
noncollinear beams a greater output intensity is 
reached. As the initial beam power increases up to 
| γ | = 17, the oscillations develop. In case of slant 
beam incidence oscillations develop earlier. As the beam 
power increases further, the oscillations become 
complex in character: several periodic processes are 
present in them. The oscillation frequency increases 
with time. 

To establish the reason of oscillation development, 
Figs. 1d and e show dependences of the reflected wave 
intensity for model of an interaction of light beams 
without self-action (terms Fsj in Eq. (1) of Part I are 
omitted). Comparison of these figures with Figs. 1a, b, 
and c shows that the basic mechanism of oscillation 
occurrence in FWI is energy transfer among the 
interacting waves. Moreover, it should be noted that 
noncollinearity of interacting beams results in the 
decrease of the oscillation amplitude and frequency of 
oscillations of the intensity maximum. We emphasize 
that in an interaction of collinear beams for | γ | = 17 a 
bistable temporal dependence of the maximum intensity 
is realized (see Fig. 1d). 

Conclusions about the most essential factor 
influencing occurrence of instability are also confirmed 
by the results of calculations without considering 
energy transfer among interacting waves (terms Fcj in 
Eq. (1) of Part I are omitted). Figures 1f and g show a 
significant decrease in the oscillation frequency of 
output intensity of the reflected beam. However, 
noncollinearity of interacting beams in this case results 
in stronger oscillations in comparison with an 
interaction of counterpropagating beams. 

Analogously behave the other characteristics of 
interaction $ PC quality and power and intensity 
reflection coefficients. As an example, Fig. 2 shows 
dynamics of PC quality. As follows from an analysis of 
the figure, noncollinearity of interacting beams results 
in the increase of oscillation amplitude and frequency 
of this characteristic. We note that without energy 
transfer among the interacting beams (simply counter 
propagation) their noncollinearity does not influence 
the quality of phase conjugation. In case of absence of 
self-action (when the length of interaction is much 
greater than the nonlinear length) in an interaction of 
collinear beams the quality oscillations may practically 
vanish (Fig. 2c): their amplitude in a quasi-stationary 
mode is very small. 

At the same time, noncollinearity of interacting 
beams results on the initial stage in the increase of 
oscillation amplitude. Then χ undergoes faster PC 
quality variations and exhibits higher average level of 
its oscillations. 
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FIG. 1. Dynamics of variations of the reflected wave intensity at the exit from the nonlinear medium in an 
interaction of collinear (solid curve) and noncollinear (β = 0.5) (dotted curve) beams at γ = $12 (a), $17 (b), and 
$20 (c) considering self-action and energy transfer; curves d and e are for collinear (d) and noncollinear (β = 0.5) 
(e) beams without self-action for γ = $17; curves f and g are for an interaction of waves without energy transfer for 
collinear (f) and noncollinear (β = 0.5) (g) beams at γ = $17. 
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FIG. 2. Dynamics of variations of the PC quality in an interaction of collinear (a) and noncollinear (b) beams at 
γ = $17 considering self-action and energy transfer: cases c and d correspond to an interaction of collinear (c) and 
noncollinear (β = 0.5) (d) beams without self-action at γ = $17; cases e and f correspond to an interaction of 
collinear (e) and noncollinear (β = 0.5) (f) beams without energy transfer at γ = $17. 

 

The variations of power and intensity reflection 
coefficients also have complex character. The maximum 
value of Rl  reaches 92; its minimum is equal to 70 (for 
β = 0) and 75 (for β = 0.5). The intensity reflectance 
changes between 50$150 (β = 0) and 40$185 (β = 0.5). 
Hence, the local beam characteristics are more sensitive to 
geometry of interaction, and noncollinearity of interacting 
beams may strongly increase them. The integral 
characteristics are less sensitive. It is important to 
emphasize that without self-action the intensity 
reflectance significantly increases in the minimum (up to 
100) and the maximum (up to 240) in comparison with 
phase conjugation with self-action. Moreover, 
noncollinearity results in amplification of oscillating 
modes. 

In an interaction of noncollinear beams their centers 
also undergo oscillations (Fig. 3). In this case, when we 
consider both self-action and energy transfer (Fig. 3a), 
the centers of the third less intense incident beam and of 
the fourth reflected beam oscillate with smaller 
frequencies and amplitudes in comparison with cases 

without self-action (Fig. 3b) and without energy transfer 
(Fig. 3c). It should be emphasized that in all three cases 
the incident beam center may lie above the reflected beam 
center; moreover, without self-action it lies above the 
reflected beam center during most of the interaction time. 
The beam self-action has the greatest influence on 
oscillations of the beam center of gravity, because in this 
case the oscillation amplitude and frequency are much 
higher than when we consider only energy transfer or 
both factors. In conclusion we note that for the first more 
intense and the second beams oscillations of their centers 
of gravity also take place and are even more pronounced; 
the amplitudes of oscillations of the positions of beam 
centers may exceed those of less intense beams almost 4 
times. 

 

3. CONCLUSIONS 
 

The process of FWI of noncollinear 
counterpropagating beams has essentially non-stationary 
character. For its adequate description 
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FIG. 3. Dynamics of variations of the position of the incident signal beam center (solid curve) in the cross section 
z = Lz and of the conjugated beam center (dotted curve) in the cross section z = 0 at γ = $17 and β = 0.5 for 
complete variant (a), without beam self-action (b), and without energy transfer (c). 

 
the non-stationary equations should be used. Because 
in an interaction of counterpropagating beams, as a 
rule, complex spatiotemporal oscillating processes are 
developed, for its modeling it is necessary to check 
the spectral structure of the intensity distribution 
obtained in numerical experiments. 

The basic reason of development of non-
stationary processes in FWI is mutual energy transfer 
among the interacting waves. Beam noncollinearity 
can not only smooth oscillations because of beam 
mixing, but also, on the contrary, intensify them. 

Development of oscillations of the interaction 
characteristics and their maximum values are critical 
to the powers of interacting beams: they occur when 
the initial pump beam power exceeds a certain 
characteristic value. In case of weak interaction the 
energy center of the conjugated beam may lie below 
the signal beam center. 
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