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We consider the statistics of time during which the integral concentration of 

an atmospheric admixture reaches some preset threshold value. The distribution 

functions for that time have been obtained for continuous and discrete processes of 

the admixture concentration variation. We discuss a possibility of approximating 

the distribution function for the discrete process by its analog obtained for the case 

when concentration is a continuous function. Practical significance of the account 

for statistical nature of the admixture  formation to the state when its integral 

concentration reaches some preset threshold value has been demonstrated by way of 

a simple example. 
 

The study of the dispersal of an atmospheric 
admixture is a very important task within the entire 
scope of the problems on  meteorological aspects of the 
atmospheric pollution. Specific features in the 
admixture distribution in time and space are also an 
important part of such studies. Among the 
characteristics that are widely used  to quantify the 
level of atmospheric contamination is the concentration 
of a contaminating species.  Normally, it is compared 
with the relevant value of the maximum permissible 
concentration (MPC) that is being established by state 
regulations. The latter are based on empirical data and 
refer to a certain time interval of observations over the 
concentration variation.1 Most often one uses MPCs 
that are connected with short-time effect of admixtures 
(from minutes to hours) and long-time effects (24 hours 
and longer). In some cases, the so-called &secondary 
standards[ are introduced. These standards contain 
concrete limitations on the duration of effects of the 
contaminating species. An example of such 
characteristics1 is given in Table I. 

 

TABLE I. Some secondary standards of air quality in 
the USA (according to Ref. 1). 
 

 

 

Substance 
Secondary 

standard, mg/m3 
Duration of 
the action, h

Dust (solid particles) 0.15  24   
Sulfur dioxide 1.3  3   
Carbon monoxide 40.0  1   

 
Thus, when completing some ecological tasks one 

ought, in the general case, to consider the product of 
an admixture concentration by time of its effect, 
instead of the MPC. So, equally strong  damage from a 

concrete contaminating species is reached either with its 
high concentration and short time of the effect, or with 
low concentration and relatively long time of action. 
The above-stated can be quantitatively described by the 
integral concentration of an admixture 

 

D = ⌡⌠
0

T

 C(t) dt = T 
1
T
 ⌡⌠

0

T

 C(t) dt = T CT, 

 

where C(t) is the instant admixture concentration at a 
given point; T is duration of its action; CT is the 
concentration averaged over time T. Since C(t) is a 
random value, the integral concentration D and CT are 
also random functions of time. If the process of 
variation of the admixture concentration is ergodic, we 

have q Š = C
$
, where C

$
 is the concentration value 

averaged over an ensemble. 
The aim of this study is to derive the distribution 

function for time intervals in which the integral 
concentration of an admixture  reaches some preset 
threshold value. 

Below we assume, without any loss of generality, 
that C(t) is the number concentration of particles. In 
the case of an admixture being emitted into the 
atmosphere from a short-lived source there is a time 
moment when the continuous function C(t), at each 
point of the space, (defined as a limit of the ratio of 
particles’ number n(t) to volume V as the latter tends 
to zero) becomes an incorrect characteristic. This is 
connected with the fact that, if the number of particles 
n(t) is finite, its ratio to volume V, tending to zero, 
becomes an indefinite value. In this case one have to 
consider an integer number of particles n(t) contained 
in a given finite volume V, instead of C(t). Therefore 
we consider, in what follows, two cases. In one of 
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them, the particles’ concentration C(t) is a continuous 
function of time. In the other one, the concentration is 
defined as q (t) = n(t)/V, where n(t) is an integer-
valued function. 

Let F(D, t) be the distribution function for the 
integral concentration of the admixture. The value 
F(D0, T) can be interpreted as the probability that the 
integral concentration of the admixture D does not 
exceed the threshold value D0: D < D0. Let us denote 
it by W{D < D0}. Let G(t, D0) be the distribution 
function of time intervals in which the quantity D 
reaches D0 value. The value G(T, D0) is the 
probability that for t ≥ T the integral concentration D 
exceeds D0: D ≥ D0. Let us denote it by W{t ≥ T}. 
Since D is a monotonic function of time, the events 
{t ≥ T} and {D ≥ D0} are equivalent and their occurrence 
probabilities are equal. From that it follows that 
W{t ≥ T} = W{D ≥ D0} = 1 $ W{D < D0}, and the 
unknown distribution function for time intervals is 
G(T, D0) = 1 $ F(D0, T). The probability density of 
the time interval in which the integral concentration D 
reaches the value D0 is, evidently, as follows 

 

g(T, D0) = $ 
∂F(D0, T)

∂T
 . 

 

The distribution function for the value of integral 
concentration (according to Ref. 2) has the form 

 

F(D, T) = 1 + 

1
2
 ⎣
⎢
⎡

⎦
⎥
⎤

erf ⎝
⎜
⎛

⎠
⎟
⎞D $ D

$

β
 $ erf ⎝

⎜
⎛

⎠
⎟
⎞D + D

$

β
 , 

 

where D
$

 is the mathematical expectation of the integral 
concentration of the admixture; β is the second 
parameter of the distribution function; erf is the 
probability integral.3 The parameters are given by the 
following relations2: 

 

D
$

 = ⌡⌠
0

T

 C
$
(t) dt;  β2 = C0 τ ⌡⌠

0

T

 σ2

c(t) dt, 

 

where σ
2

c is the variance of the admixture 
concentration; τ is the characteristic time scale of the 
concentration pulsations; q 0 = 1.59. 

The distribution function F(D, Š) is an exact 
analytical solution to the Kolmogorov equation. Its 
applicability has been verified in several experiments 
performed in a wind tunnel.2 

In addition, let us present the expression for the 
mth moment of the time interval. It follows from the 
above reasoning that 

 

T 

m
⎯

 = m ⌡⌠
0

∞

 T 

m$1 [F(D, T) $ F(D, ∞)] dt 

(m = 1, 2, ...). 

In the general case, the distribution function 
G(T, D0) for time intervals is equal to unity as T tends 
to infinity. This is caused by the fact that the condition 
D ≥ D0 does not hold for some statistical ensembles of 
time intervals considered. So, the probability density 
g(T, D0) is not normalized to unity in the general case. 

Thus, the mathematical simulations of the 
dispersal of a contaminating admixture, enables one, 
based on the above reasoning and expressions derived, 
to determine the statistical characteristics of time 
moment at which its integral concentration reaches a 
preset threshold value. 

Now let us consider the second case. Let 
concentration be determined as q (t) = n(t)/V. Then 
the value Dk = (k T)/V, where k is the mean number 
of particles observed in a volume V during time T (k is 
an integer value), is an analog of integral concentration 
D. Let W0 be the probability that a particle emitted 
from a source falls within the volume V during time T. 
If the source emits q similar particles simultaneously, 
the probability that k particles fall within the volume 
V during the time T is, evidently, 

 

C 

k
q W 

k
0 (1 $ W0)

q$k, 

 

where C 

k
q  is the binomial coefficient. If q tends to 

infinity, we obtain the probability that k particles are 
observed in the volume V during time T in the form of 
the nonuniform Poisson law3: 

 

P(k) = ∑
i=0

k

  
1
i!
 (k

$
)i exp ($ k

$
),  (k = 0, 1, 2, ...), 

 

where k
$
 is mathematical expectation of the value k 

that, in the general case, depends on time. The 

connection between the mathematical expectation k
$
 and 

the variance σ2

k is described by the formula 
 

k
$
 = σ2

k = ⌡⌠
0

T

 ν(t) dt, 

 

where ν is the number of particles falling into the 
volume V per unit time. 

Let Q(t, k0) be the distribution function for time 
intervals in which the number of particles k reaches a 
preset threshold value k0 in a given volume V. Let the 
changes in k occur at the moments tk. Then the value 
Q(T, k0) is the probability that k does not exceed k0 at 
the moment Š > tk. Let us denote it by W{T > tk}. 
Since the integral concentration Dk is a monotonic 
function of time, the events {T > tk} and {k > k0 $1} are 
statistically equivalent. From that it follows that 
W{T > tk} = W{k > k0 $ 1}. Then  

 

W{tk > T} = 1 $ W{k ≤ k0 $ 1}  
 

and 
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Q(T, k) = 1 $ ∑
i=0

k$1

  
1
i!
  (k

$
)i exp ($ k

$
) 

(k = 1, 2, ...). 
 

The probability density corresponding to function 
Q(T, k) has the form 

 

q(T, k) = 
(k
$
)k$1

(k $ 1)!
 exp ($ k

$
) 
∂k
$

∂t
 . 

 

In the case when C
$
, σc, and ν are constant, we 

obtain 
 

G(ξ, D0) = 
1
2
 ⎣
⎡

⎦
⎤

erf ⎝
⎛

⎠
⎞

 
a1 + ξ

a2 ξ 

0.5  $ erf ⎝
⎛

⎠
⎞

 
a1 $ ξ

a2 ξ 

0.5  ; 

Q(ξ, k0) = 1 $ ∑
i=0

k0$1

  
1
i!
 (ν τ ξ)i exp ($ ν τ ξ); 

a1 = D0/(C
$
 τ)$1,  a2 = (C0 σc)/C

$
,  ξ = t/τ. 

 

Physical nature of continuous and discrete random 
processes is different in principle, so we have no a 
possibility of coming from one distribution type to 
another with by a passage to a limit. But, then one can 
use the function G(ξ, D0) to approximate the function 
Q(ξ, D0). Taking 

 

D = Dk,   D0 = (k0 Š)/V,   D
$

 = D
$
k = ν T2/V, 

 

we obtain the approximation function in the form 
 

G0(ξ, k0) = 
1
2
 [erf (a + bξ) $ erf (a $ bξ)]; 

a = k0 [C0(ν τ)
0.5]$1,   b = C$1

0 (ν τ)0.5. 
 

The distributions Q(ξ, k0) and G0(ξ, k0) have two 
initial moments 

 

ξ
 k

⎯
 = k0/(ν τ), 

ξ
$
 = b$1 [exp ($ a2)/π

0.5 + erf (a)], 

ξ
2

k

⎯
 = 

k0

(ν τ)2 ⎝
⎛

⎠
⎞1 + 

1
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  ,   ξ
 

2
⎯

 = 
1
b2 ⎝
⎛

⎠
⎞ 

1
2
 + a2  . 

The conditions 
 

ξ
$
 ≤ (1 + ε) ξ

 k

⎯
,   (1 $ ε)2 ξ2

k

⎯
 ≤ ξ

 

2
⎯

, 
 

where ε is an error, are taken as a criterion of the 
closeness between Q(ξ, k0) and G0(ξ, k0). The domain 
of values of k0 and (ν τ) corresponding to close 
distributions Q(ξ, k0) and G0(ξ, k0) for ε = 0.01 is as 
follows: 

 

$ 0.02 k2

0 + 0.78 k0 ≤ (ν τ) ≤ 0.21 k2

0; k0 ≥ 4. 
 

The rate of particles’ invasion into the volume V 
is, by definition, as follows: 

 

ν = $ ⌡⌠
S

 (ϕ ⋅ dS), 

 

where ϕ is the vector of aerosol admixture flux; dS is a 
surface element of the volume V. The integral must be 
taken over surface S of the volume V under condition 
that the dot product of the vector ϕ and normal to the 
surface is negative. 

Let us consider the function G(ξ, D0). It is evident 
that in the above accepted dimensionless variables the 
value a1 estimates the mathematical expectation of the 
time interval in which the integral concentration 
reaches a preset boundary value. The parameters of this 
distribution function are determined by the 

mathematical expectation of concentration C
$
, intensity 

of its pulsation Ic = σc/C
$
, and by the threshold value 

of the integral concentration D0. The Figure 1 presents 
an example how the distribution function of time 
intervals depends on the parameters a1 and a2. 

Below, in Table II one can see the  mathematical 
expectations of time intervals in which integral 
concentration reaches a preset threshold value within 
the standard deviation interval. Those are calculated by 
the relations presented above as functions of Ic and a1. 

 
 

TABLE II. Mathematical expectation of time, plus minus standard deviation, in which the integral concentration 
reaches a preset threshold value depending on the intensity of concentration pulsation. 
 

a1 Ic 

 0.125 0.25 0.5 1.0 

0.01   0.02 ± 0.03 0.08 ± 0.11 0.28 ± 0.31 0.56 ± 0.41 
0.10   0.11 ± 0.05 0.14 ± 0.13 0.34 ± 0.46 1.26 ± 1.72 
1.00   1.00 ± 0.20 1.03 ± 0.33 1.15 ± 0.69 1.76 ± 1.93 

10.00   10.00 ± 1.48  10.00 ± 1.72  10.01 ± 2.33  10.05 ± 4.11  
100.00   100.00 ± 10.0   100.01 ± 13.1   100.04 ± 15.2   100.10 ± 19.4   
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FIG. 1.  Distribution function of the time interval in 
which the integral concentration reaches a preset 
threshold value at =1 = 1, =2 = 0.125, 0.25, 0.5 1, 2, 
and 4 (curves 1, 2, ... , 6, respectively) 
 

One can see that mathematical expectation of time 
is always greater or equal to a1. The maximum deviations 
occur at minimum values of a1 and Ic. The deviation of 
mathematical expectation of time from its estimate 
increases with increasing Ic. However the opposite 
behavior is characteristic of the case with increasing a1. 
Standard deviation of time grows with the increases in a1 

and Ic. Significant, more than 10%, standard deviations 
are observed for a1 < 10 and Ic > 0.25. 

Thus, statistical nature of the integral 
concentration has a significant effect on time in which  
 

 
 
 

the concentration reaches a preset threshold value. This 
is of basic importance, for instance, in estimation of 
maximum permissible, for people, time of staying in a 
contaminated zone. Although the trivial estimate of the 
mathematical expectation, a1, is approximately equal to 
time in which the integral concentration reaches a 
preset threshold value, we have a strong spread in the 
instantaneous values of time in which the integral 
concentration reaches a preset threshold value when the 
intensity of concentration pulsation becomes higher. 
This demonstrates the necessity to revise modern guides 
that regulate the time admissible for people to stay in 
zones dangerous for health. Corresponding theoretical 
grounds have been described in this paper. According to 
the above consideration, in the general case, one ought 
to consider the probability of time interval in which the 
integral concentration reaches a preset threshold value 
instead of the trivial estimate of the time a1. 
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