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An exact analytical solution of the problem on determining the instrumental 

function from measurement data on scattering phase function is obtained in a small-

angle approximation taking into account finite angular dimensions of a light source 

and a receiver. It is shown that the instrumental function can be described in terms 

of the integral of a product of Bessel functions. A method is proposed for 

representing instrumental function by elementary functions. The influence of the 

instrumental function on the accuracy of  measurements of small-angle scattering 

phase functions is being discussed for the case of varying particle size. 
 

1. INTRODUCTION 
 

The scattering phase function of large particles in 
the region of small scattering angles is highly sensitive 
to variations in the microstructure of scattering 
particles' ensemble. This has motivated the development 
of optical methods for diagnostics of coarse disperse 
media by solving the inverse problem using data on 
small-angle scattering phase functions. The 
investigations into this problem have been initiated by 
authors of Refs. 1 and 2. The account for multiple 
scattering effects, when solving the problems of 
diagnostics of coarse disperse media, made necessary the 
development of methods for inverting the correlation 
function of particle shadows.3,4 The latter  function is 
the Hankel transformation of the diffraction component 
of the small-angle scattering phase function. 

In practice, the measurements of scattering phase 
functions in the region of small scattering angles are 
usually hindered because of a finite angular width of a 
light beam coming from a source and receiver's field of 
view angle. The joint effect of these factors, that, in 
the final result, determines the instrumental function of 
a measuring device, increases with increasing size of 
scattering particles. As a consequence, this effect 
restricts  the value of the maximum particle size above 
which the small-angle measurements are no longer 
informative. To quantify the influence of the 
instrumental function on the precision of small-angle 
methods of diagnostics of scattering media, rigorous 
treatment of light field nearby the incidence direction is 
needed. The technique and calculated results on the 
instrumental function of a sun photometer have been 
discussed in Ref. 5 based on the direct numerical 
integration, within the frameworks of single-scattering 
approximation, over the photometer field of view and 
the Sun disc. 

In this paper, the formalism of small-angle 
radiative transfer equation (RTE) in the single-

scattering approximation is used to establish the 
relation between the signal at a receiver input and the 
scattering phase function.  This approach provides for 
obtaining simple and versatile analytical expressions 
that enable easy and straightforward calculations of the 
instrumental functions at a variety of angular 
characteristics of the light sources and receivers. 

 

2. THE INITIAL EQUATIONS 

We assume that the scattering medium occupies 
the region z > 0, and its optical characteristics are 
functions of the spatial coordinate z alone.  Then we 
assume that the light flux with an infinite cross section, 
emitted by an external stationary source, propagates 
along the OZ axis and produce, on the boundary of the 
medium in the z = 0 plane, the intensity pattern  

I(n⊥, z = 0) = I0(n⊥), (1) 

where n⊥ = (nx, ny) is the projection of the direction 
vector n onto the plane XOY, and I0(n⊥) is only 
significant when γ = | n⊥ | << 1. In this case, the light 
field in the medium is described by the small-angle 
RTE,6,7 whose solution in the Fourier-domain can be 
presented by the product  

I 
∼
(p, z) = I 

∼
0(p) F(p), (2) 

where the tilde is used to denote Fourier transforms 
with respect to variable n⊥; and p is the angular 
frequency. The factor F(p), after the change of 
variables, ρ = !/k, k = 2π/λ, where λ is the 
wavelength of light, becomes a transverse function of 
the field cross-coherence for the plane incident wave 
I0(n⊥) = δ(n⊥), where δ(n⊥) is the two-dimensional 
delta function. In the single-scattering approximation, 

F(p) = exp [$τ(z)] + B . 
∼
(p), (3) 
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where τ(z) = ⌡⌠
0

 z

 σext(t) dt is the optical depth of the 

layer along the path [0, z]; b = Λτ(z) exp [$ τ(z)], 
Λ = σsc/σext is the single scattering albedo, σext and 

σsc are the extinction and scattering coefficients; and . 
∼

(p) is the Hankel transform of a small-angle scattering 
phase function .(γ) 

. 
∼
(p) = 2π⌡⌠

0

∞

 γ J0(!γ) x(γ) dγ,   p = |p| (4) 

with the normalization condition being ⌡⌠    ⌡⌠ 
$∞

 

∞

x(n⊥) dn⊥ = 1. 

When writing the expression (3) it was assumed 
that the scattering phase function .(γ) does not depend 
on spatial coordinates, and that its individual terms 
describe either incident or scattered radiation 
separately. 

The inverse Fourier transform of the functions 
F(p) yields the solution J(n⊥, z) to the small-angle 
RTE for a plane incident wave; in the single scattering 
approximation, this solution being coincident, within 
the accuracy to the normalization factor, with the 
scattering phase function .(n⊥) for n⊥ ≠ 0: 

J(n⊥, z) = e$τ δ(n⊥) + Bx(n⊥). (5) 

According to expression (2) and convolution 
theorem, the solution of a small-angle RTE I(n⊥, z) can 
be represented as a two-dimensional convolution of the 
radiation intensity in free space I0(n⊥) with the 
function J(n⊥, z) from the equation (5): 

I(n⊥, z) = e$τ I0(n⊥) + B(I0**x)(n⊥). (6) 

The first term in expression (6) describes the 
intensity of attenuated incident radiation, while the 
second term 

Isc(n⊥, z) = B(I0**x)(n⊥) (7) 

is the intensity of singly scattered radiation which is 
sought here in the form of a two-dimensional 
convolution of the scattering phase function .(n⊥) with 
the beam intensity in free space I0(n⊥). Formula (7) 
can be interpreted in two ways. First, it may be 
understood as the one describing how a linear system, 
therein as a scattering medium with a pulse response 
.(n⊥), influences the input signal I0(n⊥); or, secondly, 
as the expression of the law of transformation of 
scattering phase function .(n⊥) in the measuring 
device, with the account for properties of the light 
beam illuminating the medium. Let us concentrate on 
the second aspect of this interpretation. 

 

3. INSTRUMENTAL FUNCTION IN 

MEASUREMENTS OF THE BEAM INTENSITY  
 

Now return to the initial expression (2) and take 
into account the circular symmetry of the system. In 

that case formula (7) can be written in the form of a 
Hankel transform 

Isc(γ, z) = B(2π)$1 

⌡⌠
0

∞

 p J0(γ !) I 
∼
0(p) . 

∼
(p) dp. (8) 

Let us assume that the intensity of incident 
radiation is distributed according to the following law: 

I0(n⊥) = I0 Uγs
(n⊥), (9) 

where I0 = const; 

Uγs
(n⊥) = 

⎩
⎨
⎧ 1, 0 < γ < γs,  γ = |n⊥|,

0, γ > γs
 (10) 

is the unit-step function defined in the plane. The 
Fourier transform of this function is 

U 
∼
γs
(p) = 2π 

γs J1(γs p)

p
 . (11) 

With the account of (4) and (11), the intensity 
Isc(γ, z) in the equation (8) can be expressed via the 
scattering phase function .(ω) as 

Isc(γ, z) = 2π I0 B γs ⌡⌠
0

∞

 ω A(ω, γ, γs)  x (ω) dω, (12) 

where the weighting function A(ω, γ, γs) is represented 
by the integral of the product of Bessel functions, 
namely 

A(ω, γ, γs) = ⌡⌠
0

∞

 J0(ωs) J0(γs) J1(γss) ds. (13) 

Mathematically, formula (12) expresses the rule of 
change to one-dimensional integral when calculating 
the two-dimensional convolution (7) of the scattering 
phase function .(n⊥) with the unit-step function 
Uγs

(n⊥) (see expression (10)) in the plane. Reference 8 

gives a simple representation of the integral (13) via 
the elementary functions, which is as follows: 

γs A(ω, γ, γs) = 

⎩
⎨
⎧

0, ω ≥ γ + γs,
0, ω ≤ |γ $ γs|, γ > γs,
1, ω ≤ |γ $ γs|, γs > γ,
α
π, 0 < |γ $ γs| ≤ ω ≤ γ + γs,

 (14) 

where α is the angle subtending γ in the triangle with 
the sides ω, γ and γs: 

α = arccos 
ω2

 + γ 

2 $ γ 

2
s

2ωγ  . (15) 

Thus, in the final result, the role of the weighting 
function in this scheme is determined by the angle α, 
described by expression (15). Figure 1 presents 
examples of the dependences α(ξ, η)/π as functions of 
the ratio ξ = ω/γs for different values of the ratio 
η = γ/γs. 
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FIG. 1. Family of the dependences α(ξ, η)/π as 
functions of the ratio ξ = ω/γ

s
 at different ratios 

η = γ/γ
s
 (a) η = 0.05 (curve 1), 0.5 (curve 2), 0.9 

(curve 3), 0.95 (curve 4), and 1.0 (curve 5); and 
(b) η = 1.0 (curve 1), 1.1 (curve 2), 1.2 (curve 3), 
1.5 (curve 4), 2.0 (curve 5), 3.0 (curve 6), and 4.0 
(curve 7). 
 

4. INSTRUMENTAL FUNCTION IN THE CASE OF 

A RECEIVER WITH A FINITE FIELD OF VIEW 

ANGLE 

 
In the above discussion we have analyzed the 

procedure of transformation of the scattering phase 
function in the beam intensity measurements. Now we 
shall extend our analysis to the case of measurements of 
the light flux power within a finite solid angle. The 
receiver's sensitivity function Uγr

(n⊥), in angular 

coordinates, is assumed to be a step-wise function of a 
form similar  to that presented by the expression (10), 
where γr is the receiver’s field of view angle. If the 
optical axis of the receiver is oriented along the 

direction n⊥
′(| n |⊥′ << 1), then the power of a light flux 

per unit area incident on the receiver is determined by 
the convolution 

P(n⊥
′) = (I**Uγr

)(n⊥
′), (16) 

where the intensity I(n⊥, z) is given by formula (6). 
Substituting expression (6) into the equation (16), and 
taking formula (9) into account, we obtain 

P(n⊥
′) = I0 [e$τ H(n⊥

′) + B(x**H)(n⊥
′)], (17) 

where the instrumental function 

H(n⊥
′) = (Uγs

**Uγr
)(n⊥

′) (18) 

is a two-dimensional convolution of circles on the 
plane, which have radii γs and γr and are separated at 

the distance γ = |n⊥
′ |; this instrumental function has the 

frequency response 

m 
∼
(p) = U 

∼
γs
(p) U 

∼
γr
(p). (19) 

From geometric considerations it follows8 that

 

 m(γ) = 

⎩⎪
⎨
⎪⎧

0, γ ≥ γs + γr,

πγs
2, γ ≤ |γs $ γr|, γs < γr,

πγr
2, γ ≤ |γs $ γr|, γs > γr,

γs
2β + γr

2α $ γs γr sinδ, 0 < |γs $ γr| ≤ γ ≤ γs + γr,

 (20) 

 
where α, β, and δ are the angles that subtend, γs, γr, 
and γ, of the triangle sides, respectively. The relations 
(20) allow us to calculate the signal component due to 
the directly transmitted incident radiation. The results 
of calculating H(γ) may be found in Ref. 8. 

The second term in expression (17) 

Psc(n⊥
′) = I0 B(x**H)(n⊥

′) (21) 

represents the power of singly-scattered signal. Taking 
into account the expression (19) and the convolution 
theorem, this expression can be reduced to 

Psc(γ) = I0 B(2π)$1 
⌡⌠
0

∞

 p J0(γ!) m 
∼
(p) . 

∼
(p) dp  (22) 

or to 

Psc(γ) = I0 B (2π)2 γs γr  ⌡⌠
0

∞

 ωq(ω, γ, γs, γr) .(ω) dω.  

 (23) 

when using the scattering phase-function in the 
expression (22).  
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The factor q(ω, γ, γs, γr) in the expression (23) 
plays the role of the instrumental function, when two-
dimensional integral (21) is replaced by the two-
dimensional integral (23); this factor, in its turn, is 
defined as the integral of the product of four Bessel 
functions: 

q(ω, γ, γs, γr) = ⌡⌠
0

∞

 J0(ω!) J0(γ!) × 

× J1(γs !) J1(γr !) !$1 d!. (24) 

Let us recast integral (24) into a more convenient, 
for computations, form. To do this, let us write the 
expression (24) in the following form: 

Psc(n⊥
′) = (Isc**Uγr

)(n⊥
′) (25) 

and making use of the formula for the transition to a 
one-dimensional integral when calculating the two-
dimensional convolution with a unit-step function on 
the plane, as was done when deriving expression (12), 
what yields the following expression: 

Psc(γ) = 2π γr ⌡⌠
0

∞

 γ ′`(γ ′, γ, γr) Isc(γ ′) dγ ′. (26) 

The product γr `(γ ′, γ, γr) in the equation (26) is 
determined by formula (14), while Isc(γ ′) follows from 
formula (12). By substituting Isc(γ ′), as given by the 
expression (12), into the equation (26) and changing 
the order of integration, we obtain 

q(ω, γ, γs, γr) = ⌡⌠
0

γ
s
+γ

r

 `(ω, γ ′, γs) `(γ ′, γ, γr)γ ′ dγ ′. (27) 

The instrumental function q(ω, γ, γs, γr) satisfies 
the normalization condition 

⌡⌠
0

∞

 q(ω, γ, γs, γr) ω dω = Ωs Ωr, (28) 

where Ωs = π γs
2 and Ωr = πγr

2. Since the integrand in the 
equation (27) factors into elementary functions the 
function q(ω, γ, γs, γr) can be calculated by this 
formula much easier than by equation (24). 

Figure 2 presents an example of normalized 
function Q(ω, γ) = ωq(ω, γ, γs, γr)/(Ωs Ωr), 
calculated for the parameters γs = 0.0047 and 

γr = 0.0058, which correspond to the scheme of 
measurements of aureole scattering phase functions 
with a sun photometer.9 Two curves, 4 and 5, in the 
right-hand side of Fig. 2 correspond to the viewing 
angles of 1 and 2°, respectively. As is seen from this 
figure the value Q(ω, γ), as a function of ω, is 
 

unimodal in shape and its skewness grows at ω → 0. 
The function Q(ω, γ) tends, with the increasing ω, to 
take a symmetric shape, at ω > γs + γr, about the axis 
ω = γ and, while vanishing outside the interval | ω $
 γ | ≤ γs + γr. 

 

 
 

FIG. 2. Normalized instrumental function Q(ω, γ) 
as a function of ω for γ

s
 = 0.0047, γ

r
 = 0.058 and 

different values of γ: 0 (curve 1), 0.005 (curve 2), 
0.0087 (curve 3), 0.175 (curve 4), and 0.0349 
(curve 5). 
 

The calculated results shown in Fig. 3 illustrate 
how the instrumental function q(ω, γ, γs, γr), as given 
by the expression (27), influences the results of 
measuring the small-angle scattering phase function 
which, in the approximation of Fraunhofer diffraction 
on a spherical particle of radius r, is defined by the 
following formula: 

x(γ) = J1
2(krγ)/(πγ2). (29) 

The normalized power of a signal due to single 
scattering  is as follows: 

x
$(γ) = ⌡⌠

(L)

 Q(ω, γ) x(ω) dω. (30) 

The integral in the equation (30) is taken over  
a finite interval L ≤ 2(γs + γr). The curves in Fig. 3 have 
been calculated for the wavelength λ = 0.55 μm, and 
the function Q(ω, γ) is calculated for the same values 
of the parameters γs and γr used to calculate the curves 
depicted in Fig. 2. The period of oscillations of the 
scattering phase function x(γ), defined by formula 
(29), is approximately estimated as Δγ = π/kr.  
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FIG. 3. Small-angle scattering phase function (1) 
and  normalized power of a signal (2) due to single 
scattering at the wavelength λ = 0.55 μm for 
spherical particles with radii r = 10 (a) and 30 μm (b). 
 
 
 
 
 
 

As the calculated results show, the smoothing effect of 
the instrumental function is most strong when the 
"window" formed by it has the width L > Δγ. In the 
example considered here, this condition is satisfied for 
particles with radii r > 13$14 μm. In particular, one can 
see from Fig. 3 that, for particles with radius 
r = 30 μm, the effect of the instrumental function of a 
measuring device on the shape of a scattering phase 
function is in a spread of its principal maximum that 
leads to a two-fold reduction of its amplitude, and, 
thus, to smoothing of the oscillations. 
 

5. CONCLUSION 

 
Thus the results presented here clearly show that 

measured values of the small-angle scattering phase 
function can be strongly distorted by the finite 
divergence of a light beam incident on the medium. For 
the measuring devices like sun photometers, these 
factors become important in the case of scattering 
particles with the radii larger than 10 μm (at 
λ = 0.55 μm). The degree of such distortions can 
readily be estimated using the expressions proposed in 
this paper for the instrumental function of a measuring 
device. The effect of instrumental function  increases 
with the increasing size of a particle. Therefore, the 
small-angle methods, developed for diagnostics of 
disperse composition of scattering media, must take this 
fact into account. 
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