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The vector form of the optical transfer operator (VOTO) of the œatmosphere$
oceanB system (AOS) represented as a 1-D, 2-D, or a 3-D plane layer with  the 
reflecting and transmitting inner interface is built up taking into account multiple 
scattering and polarization of radiation in both media.  The perturbation theory 
series and influence functions of the general boundary problem, in a vector form, of 
the transfer theory for polarized radiation are being used. The VOTO kernels are 
tensors of influence functions of both media.  The basic models of the vector 
influence functions are formulated.  The structure of the radiation field in the AOS 
is considered. 

 

INTRODUCTION 

 

In resent years there is observed an increased 
interest in the numerical models of radiation transfer in 
the œatmosphere-oceanB system (AOS) as well as in 
mechanisms of forming the radiation field in AOS that 
allow for the radiation exchange between the two 
media. 

A comparison among seven one-dimensional models 
has been carried out under a support from the 
international science foundations.1 Five of those models 
use the Monte Carlo method, one model is based on the 
imbedding method, and the seventh one on the method 
of discrete ordinates, or more correctly, the method of 
spherical harmonics (DISORT program).2 It is 
important that the latter two models use a preliminary 
Fourier expansion over the azimuth angle. 

One-dimensional models of the radiation transfer 
in AOS have been developed using two approaches.  
According to one of the approaches the calculations are 
being done by iteration method of characteristics,3$5 
while following the other one the radiation in AOS is 
described using optical transfer operators (OTO) in 
terms of the influence functions of the atmosphere and 
ocean.6$8  The three-dimensional models of radiation 
transfer in the AOS with the horizontally 
inhomogeneous water-air interface also use the OTO-
based approach.9,10 

We have formulated an optical transfer operator 
(VOTO), in a vector form, for the case of polarized 
radiation transfer in a system with anisotropically11,12 
and isotropically13 reflecting underlying surface.  In 
such a model the ocean is considered as the horizontally 
homogeneous or inhomogeneous base.  A sea, lake, or 
any other water basin can be assumed instead of ocean. 

In this paper we develop a VOTO of the AOS 
using rigorous methods of the perturbation theory and 
theory of basic solutions. The approach proposed allows 
for polarization properties of radiation in the AOS, as 

well as for the multiple scattering effects and radiation 
exchange between the two media through the water-air 
interface.14  Using same methodological basis  the 
VOTOs of the AOS are being constructed for four 
types of the water-air interface. Those involve isotropic 
and anisotropic horizontally homogeneous and  
inhomogeneous reflection and transmission. 

 

STATEMENT OF THE PROBLEM 
 

We shall consider a plane, horizontally infinite    
$∞ < x, y < ∞, while being inhomogeneous and 
vertically finite (r⊥ = (x, y), (0 ≤ z ≤ H)), layer 
composed of two media that scatter, absorb, and 
polarize the incoming radiation. Here r⊥ = (x, y) is the 
radius-vector of a point inside the layer. The boundary 
between the two media that transmits and reflects 
radiation is at the level z = h inside the layer.  It is 
assumed that the  transfer system does not produce 
multiplication.  The  set of all directions of radiation 
propagation, s = (μ, ϕ), where μ = cos ϑ, ϑ ∈[0, π] is 
the zenith angle counted off from the axis z, and 
ϕ ∈[0, 2π] is the azimuth angle counted off from the 
axis x, forms a unit sphere Ω = Ω+∪ Ω$ with Ω+ and 
Ω$ being the hemispheres of directions with μ ∈ [0, 1] 
and μ ∈ [$1, 0], respectively.  The projection of the 
vector s on a horizontal plane is 
s⊥ = (sin ϑ cos ϕ, sin ϑ sin ϕ). To write the boundary 
conditions, we introduce the sets labeled with œtB 
(top), œbB (bottom), and œdB (dividing): 

t = {z, r⊥, s: z = 0, s ∈ Ω+}; 

b = {z, r⊥, s: z = H, s ∈ Ω$}; 

d1 = {z, r⊥, s: z = h, s ∈ Ω$}; 

d2 = {z, r⊥, s: z = h, s ∈ Ω+}. 

Assuming the macroscopically isotropic  medium to 
be in a steady state as well as the constancy of the 
radiation sources F(z, s), F0(s0; r⊥, s), FH(sH; r⊥, s), 
F1(s1; r⊥, s), F2(s2; r⊥, s), that may depend on the 
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parameters s0, sH, s1, s2, a field of quasi-monochromatic 
polarized radiation is most completely described by the 
vector Φ (r, s) whose components are the Stokes 
parameters.4  The vector of Stokes parameters Φ (SVP) 
is found as a solution of general vector boundary 
problem (GVBP)  

K̂Φ = F;   Φ | t = F0,   Φ | b = R̂Φ + FH, 

Φ | d1 = ε (R̂1Φ + T̂21Φ) + F1, 

Φ | d2 = ε (R̂2Φ + T̂12Φ) + F2  (1) 
 

with the linear operators being as follows: 
the transfer operator 
 

D̂ ≡ (s, grad) + σ(z) = D̂z + ⎝
⎛

⎠
⎞s⊥, 

∂

∂r⊥
 , 

D̂z ≡ μ 
∂

∂z
 + σ(z); 

 

the collision integral 

ŜΦ ≡ σs(z) ⌡⌠
Ω

 P̂(z, s, s′) Φ(z, r⊥, s′) ds′; 

ds′ = dμ′ dϕ′ ; 
 

the integro-differential operator K̂ ≡ D̂ $ Ŝ, 

the one-dimensional operator K̂z ≡ D̂z $ Ŝ;  

P̂ is the scattering phase  matrix4; σ(z) and σs(z) are 
the vertical profiles of the extinction and scattering 
coefficients.  

Passage of radiation through the boundary is 
described by the uniformly finite operators of reflection 

R̂1 and R̂2 and transmission T̂12 and T̂21, where the 
subscript 1 relates to the atmospheric layer (z ∈ [0, h]) 
and 2 to the ocean layer (z ∈ [h, H]) 

[R̂1 Φ] (h, r⊥, s) = 

= ⌡⌠
Ω+

 q̂1 (r⊥, s, s+) Φ(h, r⊥, s+) ds+, s ∈ Ω$; 

[R̂2 Φ] (h, r⊥, s) = 

= ⌡⌠
Ω$

 q̂2 (r⊥, s, s$) Φ(h, r⊥, s$) ds$ ,   s ∈ Ω+; 

[T̂12 Φ] (h, r⊥, s) = 

= ⌡⌠
Ω+

 t̂12 (r⊥, s, s+) Φ(h, r⊥, s+) ds+,   s ∈ Ω+; 

[T̂21 Φ] (h, r⊥, s) = 

= ⌡⌠
Ω$

 t̂21 (r⊥, s, s$) Φ(h, r⊥, s$) ds$,   s ∈ Ω$. 

The parameter ε (0 ≤ ε ≤ 1) defines the act of 
interaction between the radiation and the interface  at 

z = h; q̂1 and  q̂2 are the reflection phase  matrixes; t̂12 

and t̂21 are the transmission phase matrixes of the 
interface. 

The uniformly finite operator describing the 
reflection of radiation from the system bottom contains 

the reflection phase matrix q̂ 

[R̂ Φ] (H, r⊥, s) = 

= ⌡⌠
Ω+

 q̂ (r⊥, s, s+) Φ(H, r⊥, s+) ds+,   s ∈ Ω$, 

The boundary problem (1) is linear, and its 
solution can be obtained as the superposition 
Φ = Φ0 + Φb.  The background radiation Φ0 is found as 
a solution to the first vector boundary problem 
(FVBP) of the transfer theory assuming the œvacuumB 
conditions 

 

K̂Φ0 = F,    Φ0 | t = F0, Φ0 | b = FH,    Φ0 | d1 = F1, 

Φ0 | d2 = F2 (2) 
 

in the layer with ideally black (not reflecting and 

opaque) boundaries, that is having R̂ ≡ 0, R̂1 ≡ 0,  

R̂2 ≡ 0, T̂12 ≡ 0, and T̂21 ≡ 0 for the given sources of 
irradiation.  It is sufficient that at least one of the 
functions in the right-hand sides of the system (2) is 
nonzero.  The problem (2), for the layer z ∈ [0, H], is 
split into two independent FVBPs: one for the layer 
z ∈ [0, h] 

K̂Φ0
1 = F1;   Φ0

1| t = F0,   Φ0
1 | d1 = F1 

 

and the other one for the layer z ∈ [0, H] 
 

K̂Φ0
2 = F2,   Φ0

2| b = FH,   Φ0
2 | d2 = F2, 

 

where F1 = F in the first medium; F2 = F in the second 
medium.  Solution of such problems by the method of 
vector influence functions (VIF) is thoroughly 
described in Refs. 11 and 12. 

The contribution Φb due to the radiation exchange 
between the two media and the effect of reflecting 
bottom is determined as solution to the GVBP  

 

K̂Φb = 0, Φb| t = 0, Φb| b = R̂Φb + EH, 

Φb| d1 = ε (R̂1Φb + T̂21 Φb + E1),  

Φb| d2 = ε (R̂2Φb + T̂12 Φb + E2) (3) 

at a given illumination (irradiance, luminance) of the 
boundaries 

 

EH(r⊥, s) ≡ R̂Φ0,  E1(r⊥, s) ≡ R̂1Φ0 + T̂21 Φ0,  

E2(r⊥, s) ≡ R̂2Φ0 + T̂12 Φ0 , 
 

when irradiated by the background radiation. 
Without any loss of generality of the results 

obtained, one may limit the consideration to the GVBP 
 

K̂Φd = 0,  Φd | t = 0,  Φd | b = 0, 
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Φd| d1 = ε (R̂1Φd + T̂21 Φd + E1), 

Φd| d2 = ε (R̂2Φd + T̂12 Φd + E2), (4) 
 

that follows from the GVBP (3) for non-reflecting and 

non-emitting AOS bottom (R̂ ≡ 0, FH ≡ 0), and 
describes the effect of the radiation exchange between 
the two media through the inner boundary on the 
formation of the total radiation field of the system 
Φ = Φ0 + Φd. 

Solution of the GVBP (4) is sought as a 
perturbation series for two SVPs 

 

Φd
1 = ∑

k=1

∞

 εk Φk
1 ,   Φd

2 = ∑
k=1

∞

 εk Φk
2 ,  (5) 

 

where Φd
1 corresponds to the radiation field in the layer 

z ∈ [0, h], and Φd
2 to that in the layer z ∈ [h, H].  

Components of the series (5) satisfy a recursion system 
that is split into the problems for one medium at 
z ∈ [0, h] 
 

k = 1:  K̂Φ1
1
 = 0,  Φ1

1| t = 0,  Φ1
1| d1 = E1;  (6) 

k ≥ 2:  K̂Φk
1
 = 0,  Φk

1| t = 0,  

Φk
1| d1 = R̂1 Φk$1

1
 + T̂21 Φk$1

2
 (7) 

 

and for the other one at z ∈ [h, H] 
 

k = 1:  K̂Φ1
2
 = 0,  Φ1

2| b = 0,  Φ1
2| d2 = E2;  (8) 

k ≥ 2:  K̂Φk
2
 = 0,  Φk

2| b = 0,  

Φk
2| d2 = R̂2 Φk$1

2
 + T̂12 Φk$1

1 . (9) 
 

Each of the problems (6) and (7) is a FVBP of the 
form  

K̂Φ1 = 0, Φ1 | t = 0, Φ1 | d1 = f1(s1; r⊥, s),  (10) 

and the problems (8) and (9) are the FVBPs of the 
form 

K̂Φ2 = 0, Φ2 | b = 0, Φ2 | d2 = f2(s2; r⊥, s).  (11) 

The parameters s1 ∈ Ω$ and s2 ∈ Ω+ may be absent. 
 

INFLUENCE FUNCTIONS OF THE 

œATMOSPHERE$OCEANB SYSTEM 
 

Various possible states of polarization of a plane 
electromagnetic wave case are, in the general case,  
represented by the vector Φ composed of four real 
values Φm, m = 1, …, M, M = 4, which have the 
dimensionality of radiation intensity being the 
expansion coefficients of the vector Φ over the unit 
vectors im of some coordinate system, Φ = I1 Φ1 + 
+ i2 Φ2 + i3 Φ3 + i4 Φ4, that depends on the way in 
which a polarized radiation is described.4 Polarization 
states of radiation coming from a source, f = {fn}, 
n = 1,..., N, N ≤ 4, and of radiation Φ in the system 
may be different.  Depending on optical properties of a 

medium that can scatter, absorb, and polarize the 
incoming radiation, the radiation in the layer may 
become polarized, as a result of the transfer process, 
even if the source emits unpolarized radiation. The state 
and (or) the degree of polarization  of a polarized 
incident radiation may also be modified when 
propagated in the layer. Starting from some order of 
scattering the number of nonzero components of the 
radiation SVP may change and the situations are 
possible where N ≤ M as well as N ≥ M. 

In the general case when components of the source 

radiation SVP, f1 = {f1n}, n = 1,..., N1, N1 ≤ 4 are 
noncoinciding anisotropic horizontally inhomogeneous 

parameters f1n(s
1; r⊥, s), a solution to the linear FVBP 

(10) may be represented as a superposition  

Φ1(s1; r, s) = ∑
n=1

N1

 Φn
1(s1; r, s) , 

whose terms are solutions of a set of FVBPs  

K̂Φn
1 = 0,   Φn

1| t = 0,   Φn
1| d1 = tn f n 

1
 (12) 

with the vectors tn = {δmn}, m =1, …, M1, 
n = 1, …, N1. Here δmn is the Kronecker symbol.  By 
analogy with a scalar problem of the transfer 
theory,15,16 a solution of the FVBP (12), at a fixed n,  
is obtained as a linear vector functional 

Φn
1 = (Θn

1, f n
1) = 

1
2π ⌡⌠

Ω$

 ds$ × 

× ⌡⌠
$∞

∞

 Θ(s$;z, r⊥ $ r⊥′, s) f n 
1(s1; r⊥′, s$ )dr⊥′ . 

The vector influence functions of the atmosphere 
Θ1

n = {Θ 1
mn}, n = 1,..., N1, with the components being 

the Stokes parameters Θ 1
mn(s$; z, r⊥, s), m = 1,..., M1, 

are sought as a solution to the set of FVBP for the 
layer z ∈ [0, h] 

K̂Θn
1
 = 0;   Θn

1| t = 0,   Θn
1| d1 = tn f δ 

1
 (13) 

with the function of source f 

1
δ(s$; r⊥, s) = δ(r⊥) × δ(s $ s$) 

and parameter s$ ∈ Ω$. Components of the SVP,  
Φ1

n = {Φ 1
mn}, are calculated as scalar functionals 

Φmn
1 (s1; z, r⊥, s) = (Θmn

1 , f n 
1) = 

1
2π ⌡⌠

Ω$

 ds$ × 

× ⌡⌠
$∞

∞

 Θmn
1 (s$; z, r⊥ $ r⊥′, s) f n 

1(s1; r⊥′, s$)dr⊥′. (14) 

Following our previous papers,11,12 where we have 
proposed to do this for the first  time, let us introduce 
the tensor of influence functions (IFT) of the 
atmosphere determined in terms of N1 of SVPs, Θ1

n, 
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Π̂1 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

Θ11
1 ... Θ1n

1 ... Θ1N1

1

... ... ... ... ...

Θm1
1 ... Θmn

1 ... ΘmN1

1

... ... ... ... ...

ΘM11
1 ... ΘM1n

1 ... ΘM1 N1

1

 .  (15) 

 

The first index, m =1, …, M1, M1 ≤ 4, of the 

element Θ 1
mn of the tensor Π̂1 corresponds to an ordinal 

number of the Stokes parameter of VIF Θ1
n, and the 

second one, n = 1, …, N1, N1 ≤ 4, to the index of the 
source vector tn in the set of problems (13) describing 
the model used to calculate VIF Θ1

n. 
Let us introduce a linear vector functional of the 

vector f1 
 

Φ1
 = (Π̂1, f1) = {Φm

1 }, m = 1,...,M1, M1 ≤ 4, (16) 
 

where the Stokes parameters are solutions of the FVBP 
(10); 
 

Φm
1
 = ∑

n=1

N1

  (Θmn
1 , f n 

1) = ∑
n=1

N1

 Φmn
1  

 

are linear combinations of the linear scalar functionals 
(14). 

If a source is isotropic and horizontally 
inhomogeneous, then a solution to the  FVBP (10) is 
determined by the vector linear functionals 

 

Φn
1(z, r⊥, s) = (Θrn

1 , f n 
1) = 

= ⌡⌠
$∞

∞

 Θrn
1 (z, r⊥ $ r⊥′, s) f n 

1
 (r⊥′) dr⊥′ , 

with the kernels that are VIF of the atmosphere  

Θrn
1 (z, r⊥, s) = 

1
2π ⌡⌠

Ω$

 Θn
1(s$; z, r⊥, s) ds$ (17) 

which satisfy the FVBP 
 

K̂Θrn
1

 = 0,  Θrn
1 | t = 0,  Θrn

1 | d1 = tn δ(r⊥). (18) 
 

In the case of an anisotropic and horizontally 
homogeneous source a solution to the problem (10) is 
sought as a linear functional 

 

Φn
1(s1; z, s) = (Θzn

1 , f n 
1) = 

 

= 
1
2π ⌡⌠

Ω$

 Θzn
1 (s′; z, s) f n 

1(s1; s′) ds′ 

with the kernel that is VIF of the atmosphere 

Θzn
1 (s$; z, s) = ⌡⌠

$∞

∞

 Θn
1(s$; z, r⊥, s) dr⊥, (19) 

which is a solution of a one-dimensional FVBP 

K̂z Θzn
1  = 0, Θzn

1 | t = 0,  

Θzn
1 | d1 = tn δ(s $ s$); s$ ∈ Ω$. (20) 

In the case of an isotropic and horizontally 
homogeneous source a solution of the problem (10)  

Φn
1(z, s) = f n 

1
 Wn

1(z, s),   f n 
1
 = const, 

is calculated in terms the VIF of the atmosphere 

Wn
1(z, s) = 

1
2π ⌡⌠

Ω$

 ds$ ⌡⌠
$∞

∞

 Θn
1(s$; z, r⊥, s) dr⊥ = 

= ⌡⌠
$∞

∞

 Θrn
1 (z, r⊥, s) dr⊥ = 

1
2π ⌡⌠

Ω$

 Θzn
1 (s$; z, s) ds$1, (21) 

It is also called a vector transmission function that 
allows for multiple scattering and is determined as a 
solution of a one-dimensional FVBP4,13 

K̂z Wn
1 = 0,  Wn

1
 | t = 0,  Wn

1
 | d1 = tn. (22) 

The relations (17), (19), and (21) can be used as 

criteria for estimating the  accuracy of the  VIF Θ1
n, Θ

1
rn

, and Θ 1
zn calculation  in terms of solutions of  less 

complicated problems (18), (20), and (22).  Actually 

the influence function tensor Π̂1 (15) determined by 

VIF Θ
1
n(s$; z, r⊥, s) describes the field of polarized 

radiation in a layer with non-reflecting boundaries.  
This field is caused by the processes of multiple 
scattering of a stationary, elliptically polarized 
radiation in a narrow beam along the direction s$ ∈ Ω$, 
whose source is at the boundary z = h at the center of a 
horizontal coordinate system x, y.  The parameter of 

VIF, Θ
1
rn(z, r⊥, s), corresponding to the radiation 

intensity coincides with the point spread function and 
its Fourier image over r⊥ in the nadir direction when 
s = (μ = $1, ϕ = 0), coincides with the modulation 

transfer function.  The Π̂1 tensor determined by the 

VIF Θ 1
zn(s$; z, s) describes the field of a polarized 

radiation formed in the layer when a parallel beam of 
elliptically polarized  radiation is incident from outside  
the layer boundary, at z = h, along the direction  

s$ ∈ Ω$.  The vector influence functions Θ1
n, Θ

1
rn, Θ

1
zn, 

and W
1
n compose a complete set of basic models of 

influence functions of FVBP (10).   
In the general case, when the components of the 

Stokes vector parameter of a source f
2 = {f 2n}, 

n = 1, ..., N2, N2 ≤ 4, are anisotropic horizontally 

inhomogeneous parameters f 
2
n(s

2; r⊥, s), a solution to 
the linear FVBP (11) can be represented as a 
superposition 

Φ
2(s2; r, s) = ∑

n=1

N2

 Φn
2(s2; r, s) , 
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whose terms are a solution of a set of the FVBPs 

K̂ Φn
2 = 0,   Φn

2| b = 0,   Φn
2| d2 = tn f n 

2. (23) 

A solution of FVBP (23) at a fixed n is obtained 
as a vector linear functional 

Φn
2 = (Θn

2, f n 
2) = 

1
2π ⌡⌠

Ω+

 ds+ × 

× ⌡⌠
$∞

∞

 Θn
2(s+; z, r⊥ $ r⊥′, s) f n 

2(s2; r⊥′, s+ )dr⊥′ . 

The vector influence functions of the ocean  

Θ
2
n = {Θ 2

mn}, n = 1,..., N2, whose components are the 

Stokes parameters Θ 2
mn(s+; z, r⊥, s), m = 1,..., M2, are 

sought as a solution to the set of FVBPs for the layer 
z ∈ [h, H]   

K̂Θn
2 = 0,   Θn

2| b = 0,   Θn
2| d2 = tn f δ 

2  (24) 

with the source f 

2
δ
(s+; r⊥, s) = δ(r⊥) δ(s $ s+) and the 

parameter s+ ∈ Ω+.  The components of SVP Φ2
n = {Φ 2

mn} 
are calculated as scalar functionals 

Φmn
2 (s2; z, r⊥, s) = (Θmn

2 , f n 
2) = 

= 
1
2π ⌡⌠

Ω+

 ds+ ⌡⌠
$∞

∞

 Θmn
2 (s+; z, r⊥ $ r⊥′, s) × 

× f n 
2(s2; r⊥′, s+ )dr⊥′ . (25) 

Let us introduce the IFT of the ocean determined 

by N2 of SVPs, Θ2
n 

Π̂
2 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

Θ11
2 ... Θ1n

2 ... Θ1N2

2

... ... ... ... ...

Θm1
2 ... Θmn

2 ... ΘmN2

2

... ... ... ... ...

ΘM21
2 ... ΘM2n

2 ... ΘM2 N2

2

  (26) 

and linear vector functional of the vector f
2 in the  

form 

Φ2 = (Π̂2, f2) = {Φm
2 }, m = 1, ..., M2,   M2 ≤ 4, (27) 

where the Stokes parameters are solutions of the FVBP 
(11) and  

Φm
2
 = ∑

n=1

N2

 (Θmn
2 , f n 

2) = ∑
n=1

N2

 Φmn
2  

are the linear combinations of the linear scalar 
functionals (25). 

If the radiation source is isotropic and horizontally 
inhomogeneous, then a solution to the FVBP (11) is 
determined by the vector linear functionals 

Φn
2(z, r⊥, s) = (Θrn

2 , f n 
2) = 

= ⌡⌠
$∞

∞

 Θrn
2 (z, r⊥ $ r⊥′, s) f n 

2(r⊥′)dr⊥′, 

whose kernels are the VIF of the ocean 

Θrn
2 (z, r⊥, s) = 

1
2π ⌡⌠

Ω+

 Θn
2(s+; z, r⊥, s) ds+ (28) 

that satisfy the conditions of the FVBP 

K̂Θrn
2  = 0,   Θrn

2 | b = 0,   Θrn
2 | d2 = tn δ(r⊥). (29) 

For an anisotropic horizontally homogeneous 
source a solution to the problem (11) is sought by the 
vector linear functional 

Φn
2(s2; z, s) = (Θzn

2 , f n 
2) = 

= 
1
2π ⌡⌠

Ω+

 Θzn
2 (s′; z, s) f n 

2(s2; s′) ds′ 

with the kernel that is a VIF of the ocean 

Θzn
2 (s+; z, s) = ⌡⌠

$∞

∞

 Θn
2(s+; z, r⊥, s) dr⊥, (30) 

which is a solution of the one-dimensional FVBP 

K̂z Θzn
2  = 0, Θzn

2 | b = 0,  

Θzn
2 | d2 = tn δ(s $ s+); s+∈ Ω+. (31) 

For isotropic horizontally homogeneous source a 
solution of the problem (11) 

Φn
2(z, s) = f n 

2 Wn
2(z, s),   f n 

2 = const, 

is calculated using the VIF of the ocean 

Wn
2(z, s) = 

1
2π ⌡⌠

Ω+

 ds+ ⌡⌠
$∞

∞

 Θn
2(s+; z, r⊥, s) dr⊥ = 

= ⌡⌠
$∞

∞

 Θrn
2 (z, r⊥, s) dr⊥ = 

1
2π ⌡⌠

Ω+

 Θzn
2 (s+; z, s) ds+, (32) 

which is determined as a solution of a one-dimensional 
FVBP in the layer z ∈ [h, H] 

K̂zWn
2 = 0,   Wn

2| b = 0,   Wn
2| d2 = tn. (33) 

The vector influence functions of the ocean Θ2
n, Θrn

2

, Θzn
2 , and Wn

2 which are the solutions of the FVBPs 
(24), (29), (31), and (33) related by the expressions 
(28), (30), and (32) compose a complete set of basic 
models of influence functions of the FVBP (11). 

VECTOR OPTICAL TRANSFER OPERATOR OF 

THE AOS 

 
Let us use the models of VIF formulated above 

and representations of solutions to the FVBPs (10) and 
(11) in the form of vector linear functionals (16) and 
(27) whose kernels are the IFT (15) and (26) to 
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construct a solution of the GVBP (4).  If a source in 
the GVBP (4) is determined by a single interaction of 
the background radiation with the boundary, then a 
power of the parameter ε corresponds to the power in 
the dependence of the solution of the problem (4) on 

the characteristics of the operators of reflection q̂1 and 

q̂2 and transmission  t̂12 and t̂21. 
Let us introduce algebraic vectors as columns 

Φd = 
⎣
⎡

⎦
⎤Φd

1

Φd
2  , Φk = 

⎣
⎡

⎦
⎤Φk

1

Φk
2  , E = 

⎣
⎡

⎦
⎤E

1

E
2  , 

f = 
⎣
⎡
⎦
⎤f

1

f
2  , Z = ⎣

⎡
⎦
⎤Z=

Z%c
 ,  

Θ = 
⎣
⎡

⎦
⎤Θ

1

Θ
2  ,  Π̂ = 

⎣
⎢
⎡

⎦
⎥
⎤Π̂

1

Π̂
2

 ,  (Π̂, f) = 
⎣
⎢
⎡

⎦
⎥
⎤(Π̂1,  f1)

(Π̂2,  f2)
  

and define the matrix operation describing the radiation 
passage through the boundary by IFT taking into 
account multiple scattering and polarization of 
radiation in the two media  

[Ĝf] ≡ P̂(Π̂, f) = 

⎣
⎢
⎡

⎦
⎥
⎤R̂1(Π̂1,f1) + T̂21(Π̂2,f2)

R̂2(Π̂2,f2) + T̂12(Π̂1,f1)
 , (34) 

where P is the matrix composed of the reflection and 
transmission operators: 

P̂ ≡ 
⎣
⎢
⎡

⎦
⎥
⎤R̂1 T̂21

T̂12 R̂2

 . 

The boundary problems (6) and (8) for a linear 
approximation are solved using the vector linear 
functionals (16) and (27): 

Φ1 = 
⎣
⎡

⎦
⎤Φ1

1

Φ1
2  = 

⎣
⎢
⎡

⎦
⎥
⎤(Π̂1,  e1)

(Π̂2,  e2)
 = (Π̂, E) . 

It can be shown, by the induction method, that 
two successive k-approximations are connected by the 
recursion relation 

Φk = (Π̂, P̂ Φk$1) 

and for k ≥ 1 (assume F0 ≡ E) an algebraic vector of a 
source is 
 

Fk = P̂ Φk = Ĝ Fk$1 = Ĝk E , 
 

and the algebraic vector of the k-approximation of the 
solution to FVBP (7) and (9) is 

Φk = (Π̂, Fk$1) = (Π̂, Ĝk$1
 E). 

As a result we obtain an asymptotically accurate 
solution of the GVBP (4) 

 

Φd = (Π̂, Z), (35) 
 

where the two-component vector of œscenarioB at the 
boundary  

Z ≡ ẐE ≡ ∑
k=0

∞

 Ĝk
 E (36) 

is the sum of Neumann series over the orders of 
radiation passage through the boundary taking into 
account the contribution from multiple scattering as 
well as the polarization of radiation in two media with 
IFT of the view (15) and (26). 

The representation of a solution to the  GVBP (4) 
as a linear vector functional (35) establishing an 
explicit relation of the radiation recorded to the 
œscenarioB (36) at two sides of the boundary we call  
the optical vector transfer operator of the transfer 
system in two media. In its turn, the œscenarioB is 
described explicitly by the characteristics of reflection 
and transmission of the boundary for given its 
illumination.  The Neumann series (36) determines the 
œscenarioB of optical image formed as a result of 
multiple scattering of radiation in the two media and 
passage of the boundary taking into account 
mechanisms of polarization and depolarization both in 
the layer and at the boundary.  Naturally, the universal 
representation of VOTO (35) is extended to all cases of 
the spatial and angular dependence of characteristics of 
the boundary and the sources considered above.   

 

STRUCTURE OF RADIATION FIELD 
 

Proposed approach allows one to study 
mechanisms of formation of field of optical and 
millimeter-wave polarized radiation in AOS in detail 
and to obtain different approximations of the VOTO. 

Let us consider in a more detail solution of the 
problem (4) when sources are the singular direct flux 
Φ0 incident from the atmosphere along the direction 
s0 = (μ0, ϕ0) ∈ Ω+ and the down going diffuse 
background radiation Φα multiply scattered in the 
atmosphere.  We shall do this for directions 
s+ = (μ+, ϕ+)∈ Ω+: Φ0 = Φ0 + Φα.  For the sake of 
clarity the label œ1B used for the atmospheric layer we 
replace by the label œaB and the label œ2B for the ocean 

layer for the label œocB, and also the symbols ~z = z $ h, 
~μ, and ~ϕ are introduced for coordinates in the ocean.  
In this case the functions of sources located from the 
side of the atmosphere and ocean, with respect to the 
interface, at the height z = h, between them are as 
follows: 

E1 = Ea = Ea
s
 + Ea

d,  E2 = Eoc = Eoc
s

 + Eoc
d  

and can contain the singular components: 

Ea
s(μ0, ϕ0; h, μ$, ϕ$) = R̂1 Φ0 = 

= Ea
s(μ0, ϕ0; h, $μ0, ϕ0) δ(μ$ + μ0) δ(ϕ$ $ ϕ0) 

which is the direct flux reflected into the atmosphere 
from the interface along the direction  
s$0 = ($μ0, ϕ0) ∈ Ω$, 

Eoc
s (μ0, ϕ0; h, μ$+, ϕ+) = T̂12 Φ0 = 
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= Eoc
s (μ0, ϕ0; h, μ$0, ϕ0) δ(μ

$+ $ μ$0) δ(ϕ+ $ ϕ0) 

being the direct flux refracted into the ocean through 

the interface along the direction s$0 = (μ$0, ϕ0) ∈ Ω +
crit, 

μ$0 ≥ μ
$

crit > 0, and smooth diffusion components: 

Ea
d(μ0, ϕ0; h, μ$, ϕ$) = R̂1 Φa

+ 

that is the background radiation of the atmosphere 
reflected from the interface into the atmosphere along 
the directions s$ = (μ$, ϕ$) ∈ Ω$; μ$

 = $ μ+; and  
ϕ$

 = ϕ+, and 

Eoc
d (μ0, ϕ0; h, μ$+, ϕ+) = T̂12 Φa

+ 

or the background radiation of the atmosphere refracted 
into the ocean through the boundary along the 

directions s$+ = (μ$+, ϕ+) ∈ Ω +
crit; μ

$+
 ∈ [μ$crit, 1], where μ$

crit corresponds to the direction of the interface shadow 
in the ocean.   

Components of the algebraic source vector Fk for 
the problems (6)$(9) are pairs of Stokes vector-
parameters 

Fa,k ≡ R̂1 Φa,k
+

 + T̂21 Φoc,k
$ ,   Fa,0 ≡ Ea, 

Foc,k ≡ R̂2 Φoc,k
$  + T̂12 Φa,k

+ ,   Foc,0 ≡ Eoc. 

Solutions of the problems (6) and (7) are defined 
in terms of IFT of the atmosphere (15), that is,  

Π̂= = Π̂s
a + Π̂d

a with the mn-elements being  

Θa(μh
$, ϕh

$; z, μ, ϕ) = Θa
s + Θa

d 

that are solutions of the problems (13) with the 
parameter s$h = (μ$

h, ϕ$
h) ∈ Ω$. In these solutions the 

singular components are being separated out 

Θa
s(μh

$, ϕh
$; z, μ, ϕ) = 

= fa exp 
⎣
⎡

⎦
⎤$ 

τ(h) $ τ(z)

|μh
$|

 δ(μ $ μh
$) δ(ϕ $ ϕh

$) 

and the diffusion components are smooth functions  
Θd

a(μ$
h, ϕ$

h; z, μ, ϕ) with the parameters μ$
h ∈ [$1, 0) 

and ϕ$
h = 0.  In this case the linear functionals (16) are 

calculated as sums of four linear functionals 

Φa,1 = (Π̂a, Ea) = (Π̂a
s, Ea

s) + (Π̂a
d, Ea

s) +  

+(Π̂a
s, Ea

d) + (Π̂a
d, Ea

d) . 

Actually, the latter expression is a superposition  

Φa,1 = Φa,1
0  + Φa,1

d  , 

where the direct radiation from the interface is being 
determined only for the directions s$ ∈ Ω$  

Φa,1
0  = Φa,1

0,s  + Φa,1
0,d 

and contains the singular part along the directions  
s$0 = ($μ0, ϕ0) ∈ Ω$ only 

Φa,1
0,s(μ0, ϕ0; z, μ$, ϕ$) = (Π̂a

s
, Ea

s) ≠ 0 

and the smooth part 

Φa,1
0,d(μ0, ϕ0; z, μ$, ϕ$) = (Π̂a

s
, Ea

d) , 

that are calculated explicitly; while the contribution 
due to diffusion, being determined for all directions 
s ∈ Ω  

Φa,1
d  = Φa,1

d,s + Φa,1
d,d 

contains the component caused by multiple scattering 
in the atmosphere of the direct flux reflected from the 
interface which is calculated explicitly in terms of the 
diffusion component of the atmospheric IFT  

Φa,1
d,s(μ0, ϕ0; z, μ, ϕ) = (Π̂a

d
, Ea

s) 

and the component caused by multiple scattering in the 
atmosphere of the diffuse background radiation 
reflected from the interface and calculated for every 
mn-component through the functional with the IFT of 
the atmosphere by the quadrature method  

Φa,1
d,d(μ0, ϕ0; z, μ, ϕ) = (Θa

d, Ea
d) = 

= 
1
2π ⌡⌠

0

π

 dϕ′ ⌡⌠
$1

0

 [Θa
d(μ′, 0; z, μ, ϕ $ ϕ′) + 

+ Θa
d(μ′, 0; z, μ, ϕ + ϕ′)] Ea

d(μ0, ϕ0; h, μ′, ϕ′) dμ′. 

Solutions of the problems (8) and (9) are 

determined by the IFT of the ocean (26), Π̂oc = Π̂ s
oc + 

+ Π̂d
oc, with the mn-elements 

Θoc(μ
∼

h
+, ϕ∼h

+; z∼, μ∼, ϕ∼) = Θoc
s  + Θoc

d  

that are solutions of the problems (24) with the 

parameter s∼h
+ = (μ∼h

+, ϕ∼h
+) ∈ Ω+.  In these solutions the 

singular components are separated out 

Θoc
s (μ∼h

+, ϕ∼h
+; z∼, μ∼+, ϕ∼+) = 

= foc exp 
⎣
⎢
⎡

⎦
⎥
⎤

$ 
τ(z∼)

μ∼h
+

 δ(μ∼+ $ μ∼h
+) δ(ϕ∼+ $ ϕ∼h

+) 

and the diffusion components, are smooth functions Θd
oc

(μ∼h
+, ϕ∼h

+; z∼, μ∼, ϕ∼) with the parameters μ∼h
+

 ∈ [0, 1) and ϕ∼h
+

 = 0.  The linear functionals (27) are calculated 
assuming four terms  

Φoc,1 = (Π̂oc, Eoc) = (Π̂oc
s , Eoc

s ) + 

+ (Π̂oc
d , Eoc

s ) + (Π̂oc
s , Eoc

d ) + (Π̂oc
d , Eoc

d ). 

The latter expression can be represented as a 
superposition  

Φoc,1 = Φoc,1
0  + Φoc,1

d  , 

where the direct radiation from the interface being 

determined only for the directions s∼+
 ∈ Ω+  

Φoc,1
0  = Φoc,1

0,s  + Φoc,1
0,d  
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contains the singular part along the directions s$+
0 = 

= (μ$0, ϕ0) ∈ Ω +
crit only 

Φoc,1
0,s (μ$0, ϕ0; z

∼, μ∼+, ϕ∼+) = (Π̂oc
s , Eoc

s ) ≠ 0 

and the smooth one 

Φoc,1
0,d (μ0, ϕ0; z

∼, μ∼+, ϕ∼+) = (Π̂oc
s , Eoc

d ) , 

which are calculated explicitly; while the diffusion 

contribution determined for all directions s∼ ∈ Ω 

Φoc,1
d  = Φoc,1

d,s  + Φoc,1
d,d  

contains the component due to multiple scattering in 
the ocean of direct radiation from the atmosphere 
refracted through the interface and explicitly calculated  
using the IFT of the ocean 

Φoc,1
d,s (μ$0, ϕ0; z

∼, μ∼, ϕ∼) = (Π̂oc
d , Eoc

s ). 

The component caused by multiple scattering in 
ocean of the background radiation of the atmosphere 
refracted through the interface and calculated for every 
mn-component using the IFT of the ocean by the 
quadrature method  

Φoc,1
d,d (μ0, ϕ0; z

∼, μ∼, ϕ∼) = (Θoc
d , Eoc

d ) = 

= 
1
2π ⌡⌠

0

π

 dϕ′ ⌡⌠
$1

0

 [Θoc
d (μ′, 0; z∼, μ∼, ϕ∼ $ ϕ′) + 

+ Θoc
d (μ′, 0 ;z∼, μ∼, ϕ∼ + ϕ′)] Eoc

d (μ0, ϕ0; h, μ′, ϕ′) dμ′. 

In each approximation at n ≥ 2 in the iteration 
cycle over the orders of radiation interaction  with the 
interface only the diffusion sources enter the problems 
(7) and (9).  Along the direction from the atmosphere 
it is 

Fa,k = Fa,k
d (h, μ$, ϕ$) = Fa,k

d,a + Fa,k
d,oc, 

where the first term corresponds to the influence of 
radiation coming from the atmosphere 

Fa,k
d,a(h, μ$, ϕ$) = R̂1 Φa,k

d+ , 

and the second term corresponds to the influence of 
radiation coming from the ocean 

Fa,k
d,oc(h, μ$, ϕ$) = T̂21 Φoc,k

d$ . 

Along the direction from the ocean it is 

Foc,k = Foc,k
d (h, μ∼+, ϕ∼+) = Foc,k

d,a  + Foc,k
d,oc , 

where the first term describes the influence of radiation 
coming from the atmosphere 

Foc,k
d,a (h, μ$+, ϕ$+) = T̂12 Φa,k

d+ , 

and the second one describes the influence of radiation 
coming from the ocean 

Foc,k
d,oc (h, μ∼+, ϕ∼+) = R̂2Φoc,k

d$ . 

Note that in order to calculate sources, only two 
angular distributions of the diffuse radiation are 
needed. The one for radiation incident along the 

direction from the atmosphere Φa,k
d+ (h, μ+, ϕ+) and the 

other for that incident on the interface  along the 

direction from ocean Φoc,k
d$ (h, μ∼$, ϕ∼$). 

Solution of the problem (7) in every iteration is 
determined as a functional with the IFT of the 
atmosphere (15) 

Φa,k(z, μ, ϕ) = (Π̂a, Fa,k$1) = Φa,k
0  + Φa,k

d  , 

in which two types of radiation are separated out: the 
direct diffuse radiation from the boundary for the 
directions of ascending radiation S

$ = (μ$, ϕ$) ∈ Ω$ 
calculated explicitly by the singular component of IFT 
of the atmosphere 

Φa,k
0  = Φa,k

0,d(z, μ$, ϕ$) = (Π̂a
s, Fa,k$1

d ) 

and diffusion radiation multiple scattered in the 
atmosphere for all directions s ∈ Ω calculated by the 
method of quadrature 

Φa,k
d  = Φa,k

d,d(z, μ, ϕ) = (Π̂a
d, Fa,k$1

d ) . 

Solution of the problem (9) at each iteration is 
determined as a functional with the IFT characteristic 
of the ocean (26) 

Φoc,k(z
∼, μ∼, ϕ∼) = (Π̂oc, Foc,k$1) = Φoc,k

0  + Φoc,k
d , 

in which two types of radiation are separated out: the 
direct diffuse radiation reflected from the interface 
along the directions of down going radiation  

s∼+
 = (μ∼+, ϕ∼+) ∈ Ω+ calculated explicitly using the 

singular component of the IFT of ocean  

Φoc,k
0  = Φoc,k

0,d (z∼, μ∼+, ϕ∼+) = (Π̂oc
s  ,Foc,k$1

d ) 

and diffuse radiation multiply scattered in the ocean 

along all directions s∼ ∈ Ω calculated by the quadrature 
method  

Φoc,k
d  = Φoc,k

d (z∼, μ∼, ϕ∼) = (Π̂oc
d , Foc,k$1

d ) . 

The asymptotically accurate solution of the 
problem (4) for the atmospheric layer z ∈ [0, h] that 
completely allows for the contribution due to the  
influence of the ocean in the calculation structuring 
model considered can be represented as a superposition 
of following functionals: 

Φ
a(z, μ, ϕ) ≡ ∑

k=1

∞

 Φa,k = Φd
1 = (Π̂a

s
, Ea

s) + 

+ (Π̂a
d
, Ea

s) + (Π̂a
s
, Za) + (Π̂a

d
, Za). (37) 

The diffusion œscenarioB at the interface from the 
side of the atmosphere being caused by the radiation 
exchange between the ocean and the atmosphere is 

Za(h, μ$, ϕ$) ≡ ∑
k=1

∞

 Fa,k$1
d  = R̂1 Ya + 
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+ T̂21 Yoc = R̂1 Φa
+ + R̂1 Y

∼
a + T̂21 Yoc, 

where the total diffuse irradiance of the interface by 
radiation coming form the atmosphere is 

Ya(h, μ+, ϕ+) = Φa
+ + Y

∼
a,   Y

∼
a ≡ ∑

k=1

∞

 Φa,k
d+  , 

and by the radiation from the ocean  

Yoc(h, μ∼$, ϕ∼$) ≡ ∑
k=1

∞

 Φoc,k
d$ . 

The asymptotically exact and complete solution of 
the problem (4) for the ocean layer z ∈ [0, H] taking 
into account the radiation exchange between the ocean 
and the atmosphere is presented as the following 
superposition of functionals: 

Φoc(z∼, μ∼, ϕ∼) ≡ ∑
k=1

∞

 Φoc,k = Φd
2 = (Π̂oc

s , Eoc
s ) + 

+ (Π̂oc
d , Eoc

s ) + (Π̂oc
s , Zoc) +(Π̂oc

d , Zoc).  (38) 

The diffusion œscenarioB at the interface from the 
ocean side caused due to the radiation exchange 
between the ocean and the atmosphere is 

Zoc(h, μ∼+, ϕ∼+) ≡ ∑
k=1

∞

 Foc,k$1
d  = T̂12 Ya +  

+ R̂2 Yoc = T̂12 Φa
+ + T̂12 Y

∼
a + R̂2 Yoc. 

Let us write the representation (37) by separating 
the linear approximation 

Φ
a = Φa,1 + (Π̂a

s
, Z
∼

a) + (Π̂a
d
, Z
∼

a). 

Here the diffusion œscenarioB from the side of the 
atmosphere at the interface, being at the height z = h, 
due to the nonlinear orders of radiation exchange 
between the ocean and the atmosphere, 

Z
∼

a(h, μ$, ϕ$) ≡ ∑
k=1

∞

 Fa,k
d  = R̂1 Y

∼
a + T̂21 Yoc, 

is determined by the total irradiance of the interface by 
radiation coming from the atmosphere Ya and by the 
complete irradiance by radiation coming from the  
ocean Yoc. 

Let us now separate out the linear approximation 
in the representation (38) 

Φ
oc(z∼, μ∼, ϕ∼) = Φoc,1 + (Π̂oc

s , Z
∼

oc) + (Π̂oc
d , Z

∼
oc). 

Here the diffusion œscenarioB at the interface z = h for 
radiation coming from the ocean that is caused by 
nonlinear orders of radiation exchange between the 
ocean and the atmosphere 

Z
∼

oc(h, μ∼+, ϕ∼+) ≡ ∑
k=1

∞

 Foc,k
d  = T̂12 Y

∼
a + R̂2 Yoc 

is determined by the partial irradiance of the interface 
with radiation coming from the atmosphere Ya and total 
irradiance by the radiation coming from the ocean Yoc. 

 
CONCLUSION 

 
The vector optical transfer operator (35) 

constructed using rigorous mathematical methods is a 
new model for the transfer of polarized radiation  in a 
two-media system that is adequate to GVBP (4).  New 
results obtained using the approach proposed  are the 
reduction of the initial GVBP (4) with a complex 
nonlinear dependence on the interface properties to the 
solution of a FVBP with œvacuumB boundary 
conditions for each of two media separately and 
formulation of the VOTO (35) in a matrix form with 
the kernel being a two-component algebraic vector IFT, 
Π.  The universal functions of the horizontal variations, 
and angular dependences of the boundary conditions 
and sources of GVBP (1) and (4) are separated out, 
that are invariant relative to the polarization 
characteristics of radiation.   

Having a set of such invariant VIFs that are 
solutions to one in the pairs of FVBPs (13) and (24), 
or (17) and (28), or (19) and (31), or (22) and (33), 
one can obtain, using the Neumann series (35),  
solutions of the problems with different spatial and 
angular structures of sources and kernels of reflection 
and transmission operators in any order approximation  
of the radiation exchange between the media taking 
into account multiple scattering and polarization in 
both media by the IFT for every passage of radiation 
through the interface.   

The operator recursion relation obtained for the 
Neumann series (35) terms increases the efficiency of 
calculations by nonlinear approximations.  The method 
of splitting the GVBP (4) for a two-media system into 
the FVBPs for each medium separately allows one, 
using the VOTO (35), to obtain full fields of polarized 
radiation in the transfer systems combined from media 
represented by different optical and physical models 
and (or) having different properties of the interface.   

The basic mathematical models of VIF constructed 
((13), (18), (20), (22), (24), (29), (31), (33)), IFT 
(15), (26), and VOTO (35) allows one to develop new 
algorithms for numerical simulations of the transfer of 
polarized optical and millimeter-wave (in quasi-optical 
approximation) radiation in two-media systems like 
œatmosphere$oceanB, œatmosphere$hydrometeorsB, 
œatmosphere$vegetationB, and also to calculate the 
radiation corrections in the methods of remote sensing, 
vision theory, and theory of image transfer through 
turbid polarizing media. 
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