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A new combined nonparametric algorithm based on a four-step procedure is 

developed for segmentation of multi-spectral space-made photographs of the Earth’s 

underlying surface and cloudiness. At the first step, fragment-by-fragment local 

clustering of video data is performed by use of the Bhattacharyya distance or 

Kullback divergence. At the second step, adjacent obtained classes are unified by 

use of the empirical risk functional. At the third step, enlarged classes serve as a 

learning material for a nonparametric algorithm of pattern recognition. Finally, at 

the fourth step, the pattern recognition algorithm performs segmentation of the 

whole image. This approach makes it possible to solve the problem of compromise 

between awkwardness of the initial data and necessity to use adequate models of 

images under recognition based on nonparametric estimates of unknown conditional 

probability distributions. Besides, the problem of studying complexes of features for 

information content is being solved in the sense of the minimum of the empirical 

risk criterion. 

 
INTRODUCTION 

 
Multichannel space-made photographs of the 

Earth’s underlying surface and cloudiness are main 
sources of fast information in solving problems of use of 
nature resources, climate-ecological monitoring, and 
evaluation of states of natural complexes. Since 
recording of images is performed under conditions of 
broken cloudiness in the overwhelming majority of 
cases, there arises a problem of automatic revealing of 
cloudiness fields by use of algorithms of video data 
segmentation.1$4 The presence of cloudiness is a 
disturbing factor, so these parts of an image must be 
highlighted before solving the problem of classification 
of textural homogeneity of video data concerning the 
Earth’s underlying surface. 

The algorithm of automatic classification proposed 
below has good local properties and can work with 
large arrays of video data. It is a four-step procedure. 
At the first step, cluster analysis of small fragments of 
multispectral images is performed. The analysis is based 
on seeking for modes of mixing distributions followed 
by enlargement of classes by use of the Bhattacharyya’s 
distances or the Kullback’s information criterion. At 
the second step, the obtained classes of all fragments 
are united into larger blocks by use of empirical risk. 
At the third step, the algorithm of pattern recognition 
learns to distinguish classes obtained at the second step 
of data aggregation, and complexes of features are 

studied for information content. Finally, at the fourth 
step, the learned decision rule recognizes components of 
the whole image. Since a small amount of fragments 
statistically equivalent to the whole image is sufficient 
to serve as a learning material, this approach leads to 
sharp decrease of computation expenses with saving the 
accuracy characteristics of the decision rule. 

The salient feature of the proposed algorithm is 
the fact that a nonparametric estimation of the risk 
functional or nonparametric estimations of the 
boundaries of this functional serve as a measure of 
closeness or distinguishability of distinguished classes, 
and probability models of classes are recovered by use 
of nonparametric approximations of unknown 
conditional probability density functions. 

 

MATHEMATICAL FOUNDATIONS FOR 
SYNTHESIS OF PATTERN RECOGNITION 

ALGORITHMS 
 

To begin, let us consider the problems connected 
with construction of automatic classification algorithms 
and present principle mathematical relations of 
synthesis of pattern recognition algorithms used 
below.1$5,8 

Let the result of observation be a set of numbered 
fields of video data given in several spectral ranges so 
that every pixel of an image of the Earth’s underlying 
surface and cloudiness recorded by the recording system 
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is characterized by a random vector X = (X1, ... , Xn)T, 

where T is the transposition sign; X ∈ Rn ≡ χ, and Rn
 

is the n-dimensional space of observations. The 
components Xi, i = 1, ..., n of the observation vector X 
characterize the reflecting (radio brightness) properties 
of landscapes and cloudiness in every corresponding 
spectral range. We assume that the joint distribution of 
the vector X components in the space of observations 
can be presented as the following mixing probability 
density function: 

 

f(x) = ∑
ν ∈ L

 P(ν) fν(x; θν), ν ∈ L ≡ {1, ..., L}, (1) 

 

where L is the space of classes; L is the number of 

classes; fν(x; θν) is the conditional unimodular 

parametric (with the parameter vector θν ∈ Rmν, mν is 
the dimension of the space of parameters) probability 
density function of class ν; and P(ν) is the weight of 

the probability density function fν(x; θν) in the mixture 
having a meaning of a priori probability of appearance 

of the class ν; ∑
ν ∈ L

 P(ν) = 1, unknown. The problem is 

to identify all the components of the mixture (1) 

{L, P(ν), fν(x; θν), ν ∈ L } from the available non-
classified sample of observations X1, ... , XN of size N. 

It should be noted that the problem of recovering 
of mixture (1) components has a solution only if it can 
be identified.1$3 This condition is difficult to verify in 
practice. From the geometrical point of view, it means 
that f(x) must have œwell pronounced” local modes 
generated by cluster-forming subsamples of a mixed 
sample; besides, the behavior of f(x) in a vicinity of 
the mode must permit recovering of the parametric  

functions fν(x; θν), just which are the models of the 
sought classes, with accuracy sufficient for practice. In 
such a general formulation, the problem of seeking of 
unknown parameters θ

ν
 and other components of 

Eq. (1), for instance, by the maximal likelihood 
method, is desperately awkward. If nonparametric 
estimates of unknown distributions are taken as f(x), 
the problem becomes even more complicated. 

Let us suppose that decomposition of the mixture 
(1) is performed in a certain way and the corresponding 
parametric probability measures f(x/ν), ν ∈ L, are 
recovered. Then the problem of construction of decision 
rules for pattern recognition, with estimate of their 
quality, can be formulated in the following way. Let 
probability measures with a priori distributions of 
situations P(ν), conditional probability density 
functions f(x/ν), random vector of observations 

X ∈ Rn ≡ χ, ν ∈ L, and a simple loss matrix 1 $ δνμ, 
where δνμ is the Kronecker delta, ν, μ ∈ L, be defined 
in the Euclidean n-dimensional space of observations Rn 
and the space of hypotheses L ≡ {1, ..., L}. Then the 
quality of supposed classification can be estimated by 
the minimum of mean losses or minimum of mean 
recognition errors (minimum of the risk functional) 

 

r = ∑
ν ∈ L

   ⌡⌠
R
n

 P(ν) f(x/ν) 
⎣
⎡

⎦
⎤1 $ 

ν ∈ L
Π  E{lνμ(x)}  dx, (2) 

 

where  
 

E{t} = 
⎩
⎨⎧
1,  t ≥ 0,
0,  t < 0;

 
 

lνμ(x) = P(ν) f(x/ν) $ P(μ) f(x/μ) ≥ 0; ∀μ ∈ L, μ ≠ ν, L 
is the space of classes, L ≡ {1, ..., L}, L is the number of 
classes enumerated by the natural scale. In this case, 
for the simple loss matrix it is the averaged error 

probability carried by the Bayes decision rule lνμ(x). 
Decomposition in Eq. (1) can be performed in other 
nonparametric way, namely, by indication of classes 
containing some sampled values of a mixed sample 

represented by separate classes X
ν

1, ... , X
ν

Nν
, ν ∈ L. In 

this case, with f(x/μ) given, it is naturally to estimate 
the mean risk (2) by the empirical risk, namely, 

 

r̂ = ∑
ν ∈ L

   
1

Nν

 ∑
j=1

Nν

 P(ν) I{ν = arg max
μ ∈ L

 P(μ) f(X
ν

j/μ)}, (3) 

 

where I{œtrue”} = 0, I{œfalse”} = 1 is the characteristic 
function; N

ν
 is the size of the sample of class ν ∈ L, and 

 

u(x) = arg max
μ ∈ L

 P(μ) f(x/μ) (4) 

 

is the Bayes decision rule written in another, identical 
form; u(x) is the taken decision (in the simplest case, 
elements of L can be decisions), u ∈ L. 

If the nonparametric estimates f̂(x/μ) by learning 

sequences X
μ

1,..., X
μ

Nμ
, μ ∈ L, are taken as unknown 

conditional probability density functions f(x/μ), 
μ ∈ L, the empirical risk (3) is calculated by the 
method of œrunning” testing in the following way. 

When f̂(x/ν = μ) is calculated in Eq. (3) for ν = μ at 

the point x = X
ν

j, the latter is excluded from the 

sampling values, by which, properly speaking, f̂(x/ν) 
is estimated. The following two estimates differing in 
the kernel type will be used as nonparametric estimates 
for unknown probability density functions. For 
instance, the estimate with a Gaussian kernel has the 
following expression: 

 

f̂(x/ν) = 
1

Nν

 ∑
j=1

Nν

 (2π)$n/2⏐R̂ν⏐
$1/2 h$n

ν  × 

 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2h2
ν

 (x $ X
ν

j)
T R̂$1

ν  (x $ X
ν

j)  , (5) 

 

where R̂ν is the covariation matrix (sampled estimate); 
T is the transposition sign; h

ν
 is the smoothing 

parameter whose properties guarantee asymptotic 
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convergence of f̂(x/ν) to the corresponding probability 
density function.1$3 In other case, to make the 
calculations shorter, we use the Epanechnikov kernel 
with an œinternal” coordinate system providing turn of 
the spread ellipse in correspondence with the spread of 
sampled data6,7 

 

f̂(x/ν) = 
1

Nν

 ∑
j=1

Nν

 Π

n

i=1

 × 

 

× 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

λ 

i1/2
ν  h ν

 
⎣
⎢
⎡

⎦
⎥
⎤

a $ b 
(g

T
i  (x $ X

ν

j))
2

λ  

i
ν h 

2
ν

   , (6) 

 

where the following auxiliary coordinate system is 
introduced: 

 

u = Gx,  M [UU
T] = GM [ ]X

°  
X
° T

G
T = 

 

= G R̂ν G
T = Λ,  Λ =

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

λ

λ

1
0

0

�

n

 ,  G

n

=

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

g

g

1

T

T

�  , 

 

G is the matrix of the decorrelating orthogonal 
transform; M[.] is the operator of mathematical 

expectation; X
°
 are centered observations; Λ is the 

diagonal matrix of eigenvalues; a = 3/4 5; b = a/5. 
The salient feature of the modified Epanechnikov kernel 
is that the common smoothing parameter for all 
dimensions of the space of observations is scaled by 
coordinates with eigenvalues λi, i = 1, ... , n of the 

estimation correlation matrix R̂ν. 
When using nonparametric estimates of unknown 

distributions (5) and (6), the smoothing parameter hν, 
ν ∈ L, remains poorly defined. So there arises a 
possibility of additional adaptation of probability image 
models to concrete conditions of observation and 
learning samples. The most natural, although rather 
awkward for calculations, approach to determination of 
smoothing parameters is the way based on minimization 
of the risk functional (empirical risk) by a set of 
smoothing parameters with allowance made for the fact 
that the functional has several extremes and is not 
differentiable. In this connection, let us consider the 
following two-step procedure of the search for the 
global extreme of the functional (3). At the first step, 
a point is œthrown” randomly with uniform distribution 
into the search domain which is a multi-dimensional 
square 

Π

L

ν=1

 [h
ν

min, h
ν

max], ν ∈ L,  

where hmin and hmax are the lower and upper estimated 
boundaries of the smoothing parameter, respectively. 
Then the gradient descent from this point is performed; 
here we use seeking methods of adaptation.8 For this 
purpose, the quality functional (3) is varied with 

respect to the smoothing parameters in the following 
way. Values of functional increments  

 

r+[h, a] = (r [h + a e1], ..., r [h + a eL]), 

 

r$[h, a] = (r [h $ a e1], ..., r [h $ a eL]) 

 

are calculated, where L is the number of parameters h 
corresponding to the number of classes and collected 

into the parameter vector h = (h1, ..., h
L)T; a is the 

scalar parameter defining the value of the search step; 

ei = 

⎝
⎜
⎛

⎠
⎟
⎞0,

 
..., 1

���

i

, ..., 0
T

 i = 1, ..., L are basis vectors of 

search directions. 
The estimated value of the gradient is calculated 

in the following way: 
 

r+ [h, a] $ r$ [h, a]

2a
 = ∇h± r [h, a], 

 

where ∇h± is the gradient sign. The recurrent form of 
the search adaptation algorithm is as follows: 

 

h[j] = h[j $ 1] $ γ [j] ∇h± r [h[j $ 1], a[j]], (7) 

 

the choice of the search a[.] and operating γ[.] steps is 
considered in Ref. 8 (here γ[.] < a[.]). 

It should be noted that the risk functional is the 
only functional adequate to the problem of quality 
estimation for decision rules of pattern recognition. 
However, it is rather awkward for analytical and 
numerical methods of synthesis of optimum decision 
rules. In this connection, let us consider simpler criteria 
of quality estimation for recognizing systems. 

Risk for recognizing two patterns μ, ν ∈ L, when a 
simple loss matrix is given, coincides with the averaged 
recognition error and is limited from above by the 
following value ε, which is referred to as the Chernov 
boundary2: 

 

r ≤ [P(μ) P(ν)]1/2 exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ βh ⎝
⎛

⎠
⎞ 

1
2
  = ε, (8) 

 

where βh ⎝
⎛

⎠
⎞ 

1
2
  = $ ln ⌡⌠

χ

 [f(x/μ) f(x/ν)]1/2 dx is the 

Bhattacharyya distance. 
Probability of error can be represented through the  

variational Kolmogorov distance 

2r = 1 $ ⌡⌠
χ

 ⏐P(μ) f(x/μ) $ P(ν) f(x/ν)⏐dx. 

Using the Schwarz inequality, we can 
simultaneously obtain the lower boundary for error 
probability r: 
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1
2
 $ 

1
2
 (1 $ 4ε2)1/2 ≤ r ≤ ε; (9) 

if ε is small, ε2 ≤ r ≤ ε. The Chernov boundaries and 
Bhattacharyya distance have all the necessary 
properties for distinguishability criteria of conditional 
probability distributions that are models of images. 

Let us consider the following version for 
estimation of the Bhattacharyya distance. It is based on 
the technique of functional integration over empirical 
distributions.9 The integral in the expression for the 
Bhattacharyya distance can be written in the 
symmetrical form 

 

2 ⌡⌠
χ

 [f(x/μ) f(x/ν)]1/2
 dx ≅ ⌡⌠

χ

 ⎣
⎡

⎦
⎤f(x/μ)

f(x/ν)

1/2

 dFN(x/ν) + ⌡⌠
χ

 ⎣
⎡

⎦
⎤f(x/ν)

f(x/μ)

1/2

dFN(x/μ) ≅ 

 

≅ 
1

Nν

 ∑
j=1

Nν

 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1

Nμ

 ∑
i=1

Nμ

 (2π)$n/2⏐R̂μ⏐
$1/2 h$n

μ  exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
μ

 ρμ (X
ν

j, X
μ

i)

1

Nν $ 1
 ∑
i=1

Nμ

 

i≠j 

(2π)$n/2⏐R̂ν⏐
$1/2 h$n

ν  exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
ν

 ρν (X
ν

j, X
ν

i)

1/2

 + 

 

 + 
1

Nμ

 ∑
j=1

Nμ

 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1

Nν

 ∑
i=1

Nν

 (2π)$n/2⏐R̂ν⏐
$1/2 h$n

ν  exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
ν

 ρν (X
μ

j, X
ν

i)

1

Nμ $ 1
 ∑
i=1

Nμ

 

i≠j 

(2π)$n/2⏐R̂μ⏐
$1/2 h$n

μ  exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
μ

 ρμ (X
μ

j, X
μ

i)

1/2

, (10) 

 
where FN(x/ν) is the empirical distribution 
function.6,9  The distance function 

 

ρμ(X
ν

j, X
μ

i) = (X
ν

j $ X
μ

i)
T R̂$1

μ  (X
ν

j $ X
μ

i) (11) 

 

is introduced in Ref. 10. 
Thus, nonparametric estimate of the Bhattacharyya 

distance can serve as a measure of image 
distinguishability, just as the risk or, more exactly, 
empirical risk. 

Now let us consider another measure of closeness 
of probability models of images. The measure is similar 
to the Bhattacharyya distance. When constructing 
decision rules for pattern recognition, the fundamental 
part belongs to likelihood relation or monotone 
transforms of this relation, e. g., ln{f(x/μ)/f(x/ν)}. 
In this connection, the Kullback divergence10 having all 
the necessary properties of distances is an efficient 
distinguishability measure of classes. Using the 
technique of integration over empirical distributions9 
and substituting nonparametric estimates of unknown 
probability density functions by samples into the 
expression for divergence, we obtain 

 

D =  ⌡⌠
χ

 ln 
f(x/μ)

f(x/ν) dFN(x/μ) $ 

 

$ ⌡⌠
χ

 ln 
f(x/μ)

f(x/ν) dFN(x/ν) ≅ 

≅ 
1

Nμ

 ∑
j=1

Nμ

 ln 

1

Nμ $ 1
 

∑
i=1

Nμ

 

i≠j 

(2π)$n/2⏐R̂μ⏐
$1/2 h$n

μ  →

1

Nν

 ∑
i=1

Nν

 

i≠j 

(2π)$n/2⏐R̂ν⏐
$1/2 h$n

ν    →

 

 

→ exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
μ

 ρμ (X
μ

j, X
μ

i)

→ exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
ν

 ρν (X
μ

j, X
ν

i)
 $ 

 

$ 
1

Nν

 ∑
j=1

Nν

 ln 

1

Nμ

 

∑
i=1

Nμ

 

i≠j 

(2π)$n/2⏐R̂μ⏐
$1/2 h$n

μ  →

1

Nν $ 1
 ∑
i=1

Nν

 

i≠j 

(2π)$n/2⏐R̂ν⏐
$1/2 h$n

ν  →

 

 

→ exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
μ

 ρμ (X
ν

j, X
μ

i)

 → exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h2
ν

 ρν (X
ν

j, X
ν

i)
 . (12) 

 

Note that nonparametric estimates of distributions 
with the Epanechnikov kernel (6) can be similarly used 
in Eqs. (10) and (12). 
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Thus, estimates of simpler criteria (10) and (12) 
with the œsmoothness” property are obtained together 
with the direct distinguishability criterion for 
recognized classes (3). This simplifies the solution of 
some optimization problems. 

Now let us turn to the steps of construction of the 
segmentation algorithm. First of all, we dwell on the 
problem of choice of the learning material. 

 
CHOICE OF LOCAL FRAGMENTS AND 
FORMATION OF LEARNING MATERIAL 
 
Segmentation of large arrays of video data makes 

it necessary to select fragments for learning of the 
algorithm of pattern recognition. Quality of 
classification of the whole image depends on the 
quality of learning to a large extent. In this 
connection, the set of fragments for learning material 
must be set in such a way as to reflect the variety of 
the whole field of video data. In other words, a little 
set of fragments must reflect statistical properties of 
the whole general set of data. In one of versions of 
algorithm operation, the choice of fragments in a 
large image can be left to operator’s intuition or 
given by a random mechanism. 

Let us dwell on the possibility to choose learning 
material œpurified” from mixed pixels to some extent. 
Note that one of the causes of large variety of classes 
to be distinguished is, on one hand, the variety of 
states of natural formations and, on the other hand, 
appearance of a large number of mixed pixels 
generated by bad resolution of scanning systems. For 
instance, resolution of the NOAA satellite and 
AVHRR device in nadir is only 1.1 × 1.1 km and, as 
facies is the smallest observable unity in aerial 
photography of landscapes,13 we can suppose that a 
large number and variety of elementary landscape 
forms is concentrated on an area of 1.1 × 1.1 km. Just 
this leads to appearance of mixed pixels, which are 
integral characteristics of real situations. In this 
connection, when forming the learning material, it is 
expedient to try to separate some parts with 
stationary behavior of radio brightness, rather than 
choose data fragments. We supposedly can formulate 
a hypothesis that a stationary part of radio brightness 
corresponds also to a stationary landscape formation, 
whose portrait we want to separate. In this 
connection it is expedient to enter these quasi-
stationary parts of the image in the learning material. 
This problem can be solved by spatial differentiation 
of video data followed by separation of parts with 
small and close to zero gradient. 

 
SEARCH FOR LOCAL MODES OF THE MIXING 

DISTRIBUTION  
(FIRST STEP OF THE ALGORITHM) 

 
Let us again turn to Eq. (1). We accept the 

hypothesis that the problem of mixture identification 
has a solution meaning that the mixing distribution is 

multimodal. Every mode pretends to form its own 
class, which will be called a subclass or a local class. 
Thus, there arises a primary problem of seeking local 
modes of the mixing distribution (1). In the language 
of a sample consisting of representatives of all the 
classes, this means seeking local aggregations, blobs 
of sampling values in the general bulk of data of the 
learning material X1, ..., XN obtained from a 
fragment of video data. The main formation idea of 
the algorithm for seeking local modes is that in the 
vicinity of each local mode, by definition, the number 
of sampling values is larger as compared with 
adjacent domains. Let an elementary volume 
described, for instance, by a spread ellipsoid be given 
and transported, with fixed number of points inside 
the volume, along the sampled space. Then the 
number of sampled vectors in the ellipsoid is largest 
in the case when the center of the seeking ellipsoid is 
close to a local mode of the mixing distribution. The 
problems of convergence for such an algorithm of 
mode seeking are considered in Ref. 11. It should be 
noted that the number of directions, in which the 
seeking ellipsoid may move, sharply increases with 
increasing dimensionality of the observation space. As 
a simplified variant, it is natural to estimate every 
local mode by the nearest sampled vector. Thus, the 
center of the seeking ellipsoid should be placed only 
at the points of a mixed sample X1, ..., XN, and the 
number of nearest neighbors falling within the 
ellipsoid should be estimated. This significantly 
simplifies the problem. To form the function of 
distance (11) between sampled observations, let us 
estimate the covariation matrix with use of the whole 
mixed sample X1, ..., XN: 

 

R̂ = 
1
N

 ∑
i=1

N

 (Xi $ μ̂) (Xi $ μ̂)T, 

 

where μ̂ is the estimated mathematical expectation by 
the same sample. Let us define the generalized function 
of distance in the following way: 

 

ρ(x, y) = (x $ y)T R̂$1 (x $ y), (13) 

 

where x and y are replaced with observations from the 
sample X1, ..., XN. 

For definiteness sake, let the Gaussian kernel be 
taken as a kernel of a recovered nonparametric estimate 
of the unknown probability density function. Let us set 
the boundaries of smoothing parameters obtained from 
considerations connected with maximization of the 
likelihood functional or, more precisely, empirical 
estimate of the entropy functional12: 

 

hmin = 

∑
i=1,i≠j

N

   min
{j}  

ρ (Xi, Xj)

N n
 ,  
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hmax = 

∑
i=1

N

 max
{j}

 ρ (Xi, Xj)

N n
 , (14) 

 
where hmin and hmax are estimated boundaries of the 
smoothing parameter. They are written without the 
index of belonging to a class. We will place the 
œcenter” with the point Y of the kernel function 
 

f(x) = (2π)$n/2 ⏐R̂⏐$1/2 h
$n
min × 

 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1

2 h 2
min

 ρ(X, Y)  (15) 

 

sequentially at every of the sampling points 
X1, ..., XN, Y ∈ {X1, ..., XN} and, for every such 
position, estimate the number of sampled values falling 
within the vicinity of the central point Y. Here the 
vicinity is defined by a certain level Δ, so that 
{X: f(Xj) ≥ Δ}, where Δ is significance level of the field 
of influence. 

Let us consider the set of maximal size of N1 

sampled values X
1
1, ..., X

1
N1

 falling within the Δ-

vicinity (the set was separated at the first step), and 
remove the values from the general sample. Let the 
remained part be renumbered as X1, ..., XN by a 
sequential index, where the new value N is the 
preceding value without N1. Repeating the process, we 
separate some number of mode-forming subsamples. Let 

this number be L1 for the first fragment of the learning 
set. Some sampled points (vectors) may appear single 
and we set them aside for a while. The similar 
procedure is performed for each elementary fragment 
chosen as a learning one. So, in the general set, we 

obtain a sufficiently large number of classes ∑
k

 Lk, 

k = 1, ..., K, where K is the number of the chosen 
fragments. 

 
AGGREGATION OF LOCAL CLASSES USING THE 
BHATTACHARYYA OR KULLBACK MEASURES 

OF CLOSENESS 
 

The aim of this step is to separate the closest 
subclasses among the whole variety and unite them.  
The subclasses are closest in the sense of measures (10) 
and (12). For this purpose, we study distances between 
pairs of local classes. Suppose that a certain minimal 
expected number of classes Lmin and their maximal 
number Lmax be known a priori, so it is expedient to 
consider a decomposition  of the whole image into some 
number L classes and Lmin ≤ L ≤ Lmax. The iteration 
process is exhaustion of all the possible pairs of classes 
with calculation of nonparametric estimates for the 
Bhattacharyya distance (10) or the Kullback’s measure 
(12). In the process of the first iteration, united is only 
the pair of classes with minimal distance in the sense of 

the chosen measures. At this step, we use the 
generalized metric based on ρ(x, y), as the formed 
classes are not sufficient to estimate the proper metrics 
of the type (11). Thus, continuing the iteration process 
of uniting pairs of local classes, we reduce their number 
to the number closest to Lmax. 

 
UNIFICATION OF CLASSES BY THE CRITERION 

OF MAXIMUM EMPIRICAL RISK  
(SECOND STEP OF THE ALGORITHM) 

 
At this stage, it is expedient to perform more 

correct unification into classes by use of, first, the 
proper metrics of classes with individual measures (11) 
and, second, the criterion of empirical risk. The first 
unification of class pairs is performed for the largest 
risk values r ≅ 0.5 (it means that the classes are fully 
indistinguishable). When recovering the conditional 
distributions, calculated are covariation matrices of 
classes R^ν with smoothing parameter expressed through 
observations12: 

 

hν ≅ ∑
i

 ∑
j≠i

 ρν(Xi, Xj)/nNν (Nν $ 1), 

 
where ν = 1, ..., L, L is a certain number of classes 
synthesized at the given step. To over the quality of 
classes distinguishability, the generalized risk (3) is 
calculated and its value for a given set of classes is 
stored. Continuing the hierarchic process of unification 
and enlargement of classes from Lmax to Lmin and 
comparing values of the generalized risk, we stop at its 
minimal value which results from the set of classes 
L = Lopt. Below we use this set of classes in order to 
optimize the Bayes decision rules (4) by smoothing 
parameters and to estimate the quality of feature 
subspaces. 

 
SELECTION OF INFORMATIVE FEATURES BY 

THE CRITERION OF MINIMUM EMPIRICAL RISK 
IN RECOGNITION OF MULTIZONAL IMAGE 

COMPONENTS 
(THIRD STEP OF THE ALGORITHM) 

 
Two main points should be highlighted in the 

problem of choice of informative features, namely, it is 
necessary to define the functional of information 
content of the feature subsystem, as well as the 
formation technology of sequences of feature subspaces 
that are studied for information content. 

First of all, let us note that only the mean risk is 
adequate to the problem of estimation of quality 
(information content) for complexes of features. In 
place of the mean risk, the empirical estimate of the 
latter by the learning sample, i.e., the same criterion, 
by minimization of which the optimal (Bayes) rule of 
pattern recognition was obtained, may be also used. As 
to the ways for the choice of feature subspaces, the 
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variety of methods applied in practice is not large. Note 
that the solution of the formulated problem is known 
and trivial: to obtain the optimal system consisting of k 
features chosen among n initial components of the 
observation vector, one needs only to compare the 
values of the information content criterion that were 
calculated at different k-dimensional subspaces and to 
fix the set of k features, at which the chosen criterion 
reaches its optimum. The number of these calculations 

of the optimum criterion equals the number ⎝
⎛

⎠
⎞ 

n

k
  of 

combinations of n features taken k at a time, what is 
astronomically computationally expensive even for 
comparatively small k and n. That is why truncated 
exhaustion is widely applied in practice. For instance, 
the algorithm which is conventionally denoted as œA” 
performs truncated exhaustion reducing the system of 
features by sequential elimination of features with low 
information content. In another algorithm œB”, the 
system of informative features is constructed 
sequentially by inclusion of features with high 
information content. We used the combined algorithm 
for choice of informative subspaces of k features. It is a 
modified version of truncated exhaustion. This 
algorithm resides in such procedure that full exhaustion 
by i features of n is used until the number of 

combinations ⎝
⎛

⎠
⎞ 

n

i
  determining versions of full 

exhaustion of systems by i features is small and 
acceptable in the sense of computational expenses for 
calculation of the functional of information content of 
i-dimensional subspaces. Thus, at the first step, we 
select i (i << k) informative features. At the second 
step, fixing (n $ i) remaining features which pretend to 
complement the informative set, we select, again by 
full exhaustion, a system of j features such that the set 
of i + j (i + j << k) features is optimal with respect to 
the information content criterion, and so on. The 
system of features is extended by blocks until the 
informative set of i + j + ... + l features reaches the 
sought value k. In a particular case, taking 
i = j = ... = l = 1, we obtain the algorithm œB”. A 
similar generalization is possible for the algorithm œA” 
of truncated exhaustion of subspaces, in which the 
initial dimensionality is decreased also by blocks in the 
mode of conditional full exhaustion. So, the proposed 
algorithm permits us to consider additional versions of 
feature spaces and test them for information content. 

Thus, all the components of the information 
content criterion (3) are defined completely, and r can 
be used for estimation of information content of feature 
sets what is just performed at this step. 

 

NONPARAMETRIC CLASSIFICATION OF THE 
WHOLE IMAGE BY THE PATTERN 

RECOGNITION ALGORITHM IN THE SPACE OF 
INFORMATIVE FEATURES  

(FOURTH STEP OF THE ALGORITHM) 
 
Finally, after the probability models of the classes 

are recovered and the optimal complex of informative 
features is separated, the estimating Bayes decision rule 

(4) relates the unknown re-observed vector X ∈ Rk, 
where Rk is the k-dimensional space of informative 
features (the vector is sequentially selected from the 
whole field of the analyzed multilayer image), to one of 
the given classes. So the whole image is segmented by a 
pattern recognition algorithm; as a result, texturally 
homogeneous fields of video data become resolved. 
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