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The first and second statistical moments of the optical transfer function and 

those of integral resolution of the imaging system in the turbulent atmosphere are 

calculated in the approximation of the Markovian  process. The parameters of the 

optical imaging system under certain conditions may undergo strong fluctuations 

which can be caused by even weak fluctuations of wave parameters. 
 

INTRODUCTION 
 
The imaging systems under incoherent illumination 

are usually described by the optical transfer function 
(OTF) τ(Ω) which connects the angular spectrum I(Ω) 
of an image formed with the presence of random-
inhomogeneous medium with the angular spectrum of 
the ideal geometric optical image 
Ig(Ω):I(Ω) = τ(Ω) × Ig(Ω) (Ref. 1). Thus, OTF plays 
the part of a spatial frequency filter which describes 
how the angular spectrum of the image varies under the 
effect of diffraction at the aperture of the optical 
system and inhomogeneities of dielectric permeability in 
the medium. The passband of such a filter is 
characterized by the integral of τ(Ω) over all the 
angular frequencies. The integral is said to be the 
integral resolution of the optical system. 

The influence of atmospheric turbulence on mean 
values of OTF and integral resolution is well studied 
for both turbulence with the Kolmogorov fluctuation 
spectrum of the refractive index2 and turbulence 
described by spectra with finite internal3,4 and 
external5,6 scales. However, characteristics of 
fluctuations of these parameters near mean values are 
also of interest, especially, the variance of OTF and 
integral resolution fluctuations, and correlation of OTF 
values at different angular frequencies.  

In this paper, the mean value <τ(Ω)> and 
correlation function K(Ω1, Ω2) = <τ(Ω1)τ*(Ω2)> of the 
OTF are calculated theoretically in an approximation of 
the Markovian process. On the base of the expressions 
obtained, variance of fluctuations of OTF and integral 
resolution is calculated. In our opinion, the obtained 
results permit significant improvement of the 
understanding of the fluctuation structure for 
parameters describing the imaging system operation 
under the conditions of atmospheric turbulence. 

 
1. CALCULATION OF OTF STATISTICAL 

MOMENTS 
 
Let us consider a plane light wave propagated 

along the z axis in a turbulent medium occupying the 

half-space z > 0. In the scalar approximation, we 
describe the electric field strength in the wave by a 
function u(ρ, z), where ρ is the vector in the plane 
perpendicular to the z axis. Then, as it is shown, for 
instance, in Refs. 7 and 8, the equations for the second 
and fourth order correlation functions Γ2, Γ4 of the 
scalar light field u(ρ, z) can be obtained in the 
approximation of the Markovian process 
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where 
 

Γ2(ρ1, ρ2) = <u(ρ1) u*(ρ2)> ;  (3) 
 
Γ4(ρ1, ρ2, ρ3, ρ4) = <u(ρ1) u(ρ2) u*(ρ3) u*(ρ4)> ; 

(4) 
 

H(ρ) = 2 ⌡⌠ d2 i[1 $ cos(i ρ)] Φ(i, 0) ;  (5) 

 

F(ρ1, ρ2, ρ3, ρ4) = H(ρ1 $ ρ3) + H(ρ1 $ ρ4) + 

+ H( ρ2 $ ρ3) + H( ρ2 $ ρ4) $ H( ρ1 $ ρ2) $ H( ρ3 $ ρ4); 
(6) 

 
Δn is the Laplace operator with respect to the variable 
ρn; i is the vector of spatial frequencies in the plane 
perpendicular to the direction of wave propagation z; 
k = 2π/λ is the wave number of the considered plane 
wave; Φ

ε
(i, iz) is the power spectrum of dielectric 

permeability fluctuations. It is easy to see that the 
function H(ρ) for isotropic and statistically 
homogeneous turbulence is related to the wave 
structure function D(ρ) of a plane wave having passed 
a path z in the medium. The relation is simple: 
H(ρ) = H(ρ) = 2/(πk2z)D(ρ). 
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As follows from the definition of OTF,1 the 
averaged OTF <τ(Ω)> and correlation function 
K(Ω1, Ω2) = <τ(Ω1)τ*(Ω2)> can be expressed via Γ2 
and Γ4, respectively, as the integrals 

 

<τ(Ω)> = 

1
A

 ⌡⌠ d2
 ρ P(ρ + λΩ/2) P*(ρ $ λΩ/2) × 

× Γ2(ρ + λΩ/2, ρ $ λΩ/2) ;  (7) 
 

K(Ω1, Ω2) = 
1
A2 ⌡⌠ d2

 ρ′ ⌡⌠ d2
 ρ′′ × 

× P(ρ1) P(ρ2) P*(ρ3) P*(ρ4) Γ4(ρ1, ρ2, ρ3, ρ4) ,  (8) 
 
where ρ1 = ρ′ + λΩ1/2; ρ2 = ρ′′ $ λΩ2/2; ρ3 = 
= ρ′ $ λΩ1/2; ρ4 = ρ″ + λΩ2/2; A is the scale 
constant; P(ρ) is the pupil function of the optical 
system. Thus, multiplying Eqs. (1) and (2) by the 
corresponding pupil functions and integrating Eq. (1) 
over the variable ρ and Eq. (2) over the variables ρ′ 
and ρ″, we obtain 
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4  H(λΩ) <τ(Ω)> ;  (9) 

 
ä

äz
 K(Ω1, Ω2) = $ 

πk2

4  [H(λΩ1) + H($ λΩ2)] × 

× K(Ω1, Ω2) $ 
πk2

4  ⌡⌠ d2
 ρ′ ⌡⌠ d2

 ρ′′ × 

× P(ρ1) P(ρ2) P*(ρ3) P*(ρ4) × [H(ρ′ $ ρ′′ + 

+ λ(Ω1 $ Ω2)/2) + H(ρ′′ $ ρ′ + λ(Ω1 $ Ω2)/2) $ 

$ H(ρ′ $ ρ′′ + λ(Ω1 + Ω2)/2) $ 

$ H(ρ′ $ ρ′′ $ λ(Ω1 + Ω2)/2)] Γ4(ρ1, ρ2, ρ3, ρ4) .  (10) 
 

As seen from Eq. (9), the averaged OTF <τ(Ω)> 
depends on the absolute value Ω of the angular 
frequency Ω that stems from statistical homogeneity of 
the field u(ρ, z) in the plane perpendicular to the 
direction of wave propagation. By the same reason, 
taking into account that the pupil function P(ρ) 
decreases to zero as ⏐ρ⏐ is sufficiently large, the 
differential terms [Δ1 $ Δ2] Γ2 and [Δ1 + Δ2 $ Δ3 $
 Δ4] Γ4 give no contribution when Eqs. (1) and (2) are 
integrated. 

The expression (10) is not a closed equation with 
respect to K(Ω1, Ω2), because the coherence function of 
the fourth order Γ4 enters into it explicitly. At the 
same time, Eq. (9) can be easily solved regardless a 
concrete form of the spectrum Φ

ε
(i) and, taking into 

account the evident initial condition <τ(Ω)> = τ0(Ω) for 
z = 0, it leads to the expression for the average OTF . 
This expression coincides with that obtained earlier in 
another way2: 
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2 D(λΩ)  ,  (11) 

 
where τ0(Ω) is the OTF of a diffraction-bounded 
imaging system.1 

 
1.1. The case of a small receiving aperture (d0<< l0) 

 
If the aperture diameter d0 of the considered 

optical system is much less than the inner turbulence 
scale l0, then, within the aperture limits, we can 

assume that D(ρ) = 3.28 C2
n k2 z l$1/3

0  ρ2 (Ref. 7) and 
H(ρ) = 2.088 C2

n l
$1/3
0  ρ2, what leads to the following 

expression for the average OTF: 
 

<τ(Ω)> = τ0(Ω) exp {$ (Ω2/Ω2
c } ,  (12) 

 

where Ω2
c = 0.015 l1/3

0  C$2
n  z$1. This result coincides 

with that discussed in Ref. 3. 
Since H is a quadratic function of ρ, the 

expression (10) can be transformed into a closed 
equation with respect to K for d0 <<  l0; indeed, the 
multiplier in the square brackets under the integral sign 
in Eq. (10) becomes independent of the integration 
variables ρ′ and ρ″ and can be factored outside the 
integral sign: 
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= 2.088 π3
 C2

n l
$1/3
0  (Ω1 $ Ω2)2

 K(Ω1, Ω2) .  (13) 
 

This equation can be easily solved and, taking into 
account the evident initial condition 
K(Ω1, Ω2) = τ0(Ω1) τ0(Ω2), leads to the following 
expression: 

 

K(Ω1, Ω2) = τ0(Ω1)τ0(Ω2) exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
(Ω1 $ Ω2)2

Ω2
c

 .  (14) 

 
As follows from Eqs. (12), (14) for Ω1 = Ω2 = Ω, 

<⏐τ(Ω)⏐2> = τ2
0(Ω), <τ(Ω)>2 = τ2

0(Ω)exp{$2Ω2/Ω2
c}. So 

the variance of OTF fluctuations σ2
τ
 depends on only 

the absolute value Ω of angular frequency and equals 
 

σ2
τ
 ≡ <|τ(Ω)|2> $ <τ(Ω)>2

 = 

= τ2
0(Ω) [1 $ exp{$2(Ω2/Ω2

c)}] .  (15) 
 

To make the further analysis more instructive, let 
us assume that the OTF τ0(Ω) is Gaussian: 

 
τ2
0(Ω) = exp {$(Ω2/Ω2

0)} ,  (16) 
 

where Ω0 = d0/λ; d0 is the &effective[  diameter of the 
optical system aperture. Substitution of such an  
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expression for τ0(Ω) into Eq. (15) leads to the 
following behavior of variance of OTF fluctuations: σ2

τ
 

equals zero for Ω = 0, then it monotonically increases 
to its maximal value 
 

(σ2
τ
)max = (Ω2

0/Ω2
c)[1 + (Ω2

0/Ω2
c)]$(1 + Ω2

c/Ω
2
0) = 

= 
⎩
⎨
⎧e$1 Ω2

0/Ω2
c, Ω0 << Ωc,

1, Ω0 >> Ωc,
 (17) 

 

reached at Ω2
1 = (Ω2

c/2) ln[1 + Ω2
0/Ω2

c]; then it 
monotonically decreases with further increase of Ω. As 
seen from Eq. (17), for large relative aperture 
dimensions (Ω0 > Ωc), the value of fluctuation variance 
τ(Ω) can be of the order of unit at the angular 
frequency Ω1. It means that OTF τ(Ω) undergoes 
strong fluctuations even in the case when fluctuations 
of wave phase and logarithm of wave amplitude may be 
small. 

 

1.2. Approximate analysis for the case l0 << d0 << L0 

 

In the case when the aperture diameter d0  
exceeds the internal turbulence scale l0 and remains 
small as compared with the outer scale L0, we  
have, according to Ref. 7, D(ρ) = 6.88(ρ/r0)5/3  

and H(ρ) = 2/(πk2z) 6.88 (ρ/r0)5/3, where r0 = 
= 0.185[λ2/(C2

n z)]3/5 is the Fried radius.2 The direct 
substitution of the expression for H(ρ) into Eq. (10) 
does not permit us to obtain a closed equation with 
respect to K(Ω1, Ω2). However, if the aperture 
diameter d0 is still not very long, the function H(ρ) in 
the integrand of Eq. (10) can be approximated, with 
sufficient accuracy, by the quadratic function Bρ2, 

where the coefficient B • 13.76/(π k2 z r0
5/3 d0

1/3) is 

obtained by the least squares method under the 
assumption that the aperture of the optical system is a 
circle of diameter d0. This makes it possible to obtain 
an approximate equation for K(Ω1, Ω2) similar to 
Eq. (13). Its solution yields 

 

K(Ω1, Ω2) • Τ0(Ω1) Τ0(Ω2) × 

× exp {$3.44 (d0/r0)5/3 [(Ω1/Ω0)5/3 + 

+ (Ω2/Ω0)5/3 $ 2 (Ω1/Ω0) (Ω2/Ω0)]} ,  (18) 
 

where Ω0 = d0/λ and  
 

Τ0(Ω)=
2
π[ ]arccos (Ω/Ω0) $ (Ω/Ω0) 1$ (Ω/Ω0)2 .(19) 

 

The equation for variance of OTF fluctuations 
τ(Ω) takes the form 

 

σ2
τ
 •Τ2

0(Ω) exp {$6.88 (d0/r0)5/3
 (Ω/Ω0)5/3}× 

× [exp {2(Ω2/Ω2
0)} $ 1] .  (20) 

 
 

 
FIG. 1. Variance of OTF fluctuations σ2

τ as a function 

of the absolute value Ω of the angular frequency Ω for 
the case l0 << d0 << L0 at d0/r0 = 0.1, 0.5, 1, and 2. 
 

In this case (see Fig. 1), the behavior of σ2
τ
 is 

qualitatively similar to that described by Eq. (15). 
However, the use of Eq. (20) is justified only for not 
very large aperture diameters d0. As seen from Fig. 1, 
variances of OTF fluctuations σ2

τ
 is rather large, 

although it does not reach unity for the chosen values 
of the ratio d0/r0. 

 
2. CALCULATION OF INTEGRAL RESOLUTION 

MOMENTS 
 

Let us now consider the statistics of integral 
resolution of the optical system under atmospheric 
turbulence, namely, its mean value 

 

<R> = ⌡⌠ d2 Ω <τ(Ω)> ,  (21) 

 

mean value of its module squared 
 

<|R|2> = ⌡⌠ d2 Ω1 ⌡⌠ d2 Ω2 K(Ω1, Ω2)  (22) 

 

and fluctuation variance σ2
R = <|R|2> $ <R>2. 

 

2.1. The case of a small receiving aperture (d0 << l0) 

 

In this case, as above, we consider that 
τ0(Ω) = exp {$Ω2/Ω2

0}.  Substituting Eqs. (11) and 
(14) into Eqs. (21) and (22), and using the equations 
from the Ref. 9, we obtain 

 

<R> = 
πΩ2

0

1 + Ω2
0/Ω2

c

 = 
⎩
⎨
⎧πΩ2

0 , Ω0 << Ωc,
πΩ2

c , Ω0 >> Ωc,
  (23) 
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c
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⎩
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 Ω4
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π2
 Ω2

0 Ω
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σ2
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 = <R>2
 

Ω4
0/Ω4

c

1 + 2 Ω2
0/Ω2

c

 = 

⎩
⎨
⎧π2

 Ω8
0/Ω4

c , Ω0 << Ωc,
π2

 Ω4
0 Ω

2
c/2 , Ω0 >> Ωc .

 (25) 

 
As seen from Eq. (23), the mean integral 

resolution tends to a finite limit with the increase of 
the aperture diameter. The limit is determined by 
turbulence parameters (the value of Ωc) what coincides 
with the conclusions of Ref. 4. At the same time, 
variance of fluctuations of integral resolution σ2

R
 

unboundedly increases with the increase of the aperture 
diameter. This result, however, is not of practical 
importance because Eq. (25) is valid only for d0 << l0, 
and the increase of d0 to values larger than the inner 
turbulence scale makes Eq. (25) inapplicable to the real 
physical situation. 

 

2.2. Approximate analysis for the case l0 << d0 << L0 
 

 
FIG. 2. Relative variance of fluctuations of integral 

resolution σ2
R
/<R>2 as a function of the aperture 

diameter d0 normalized to the Fried radius r0. 
 
If the aperture diameter is larger than the inner 

scale of turbulence but much less than the outer scale, 
Eqs. (11), (18), and (21), (22) permit only numerical 
calculation of the values <R>, <|R|2>, and σ2

R
. Since the 

mean value of integral resolution was already 
analyzed,1,2 we present the results of numerical 
integration for variance of fluctuations of integral 
resolution. Figure 2 presents the value σ2

R
/<R>2 as a 

function of the aperture diameter d0 normalized by 

Fried’s radius r0. The maximal value σ2
R
/<R>2 ∼ 1 is 

reached for d0/r0 • 2.6. Thus, the integral resolution 

R for d0/r0 ~ 3 undergoes strong fluctuations which 
can be caused by weak fluctuations of the wave 
parameters (phase and log-amplitude). It means that 
instantaneous images can be both much worse and 

considerably better in their quality as compared with 
long-exposure ones. So, choosing the aperture diameter 
so that it exceeds the Fried radius 2$3 times, one can 
expect that, among some instantaneous object images, 
at least one is not distorted by turbulence. 

 

CONCLUSION 
 

Thus, using the approximation of the Markovian 
process, we calculated the mean values and second 
moments of OTF and integral resolution of an optical 
system in the turbulent atmosphere. It is established 
that OTF fluctuations are not similar at different 
angular frequencies; fluctuation maximum is reached at 
a certain frequency Ω1 depending on the turbulence 
parameters and the optical system characteristics. 
Fluctuations of OTF at angular frequencies close to Ω1 
are rather high and can reach unity even under small 
fluctuations of the light wave parameters. 

Calculations of the moments of integral resolution 
R of the optical system demonstrate that variance of 
resolution fluctuations significantly depends on the 
aperture diameter d0. For d0 <<  l0, variance 
monotonically grows with the increase of d0, then, as 
shown by the approximate analysis of the case 
l0 <<  d0 <<  L0, it reaches the absolute maximum at 
d0 ∼ 3r0 and monotonically decreases to zero with 
further increase of the aperture diameter. Our 
calculations permit the estimation of the maximal 
fluctuation variance of R as close to unity. This 
indicates that strong fluctuations of integral resolution 
of the optical system are observed for the aperture 
diameter close to 3r0. They may be caused by weak 
fluctuations of the optical wave parameters. 

It should be also noted that, if the distribution 
law for the random parameter R is assumed to be 
Gaussian, our calculations of its mean value <R> and 

variance of fluctuations σ2
R
 permit us to estimate the 

probability to obtain an instantaneous OTF realization 
characterized by the integral width R larger than a 
certain given value. In particular, this yields the 
probability to obtain R > <R> equal to 1/2. 
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