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A sequential analysis of an influence of intense laser radiation on the 

potential of intermolecular interaction has been conducted. The expressions for 

radiation intensity dependence of the potential have been obtained which explain 

the available experimental results on nonlinear dependence of the CO2-laser 

radiation absorption in the H2O line wing and on the time of the H2O vibrational-

translational relaxation under nonresonance excitation. 
 

INTRODUCTION 

 

Saturation of resonance absorption1$3 and 
reduction of relaxation time of selectively excited 
vibrational state (to several times) are observed under 
resonance interaction of intense optical radiation with 
vibrational-rotational transitions of molecules at 105$
108 W/cm2 radiation intensity. The reason of the 
phenomenon is an increase of the gas temperature and 
an inclusion of additional relaxation channels due to 
intra- and inter-mode vibrational exchange.4 

At large tuning away of the radiation frequency 
from the frequency of radiation transition, the 
thresholds of the resonance nonlinear phenomena 
significantly increase, and nonresonance nonlinear 
effects appear along with the resonance ones. It was 
experimentally shown in Ref. 5 that there exists a 
nonlinear spectroscopic effect $ a decrease of absorption 
in far wing of the H2O spectral band at increase of the 
radiation intensity of CO2-laser, the frequency of which 
is tens of halfwidths tuned away from the line center 
frequency. This situation is to some extent 
nontraditional for the nonlinear laser spectroscopy, 
where effects are usually obtained by creation of such 
conditions for resonance interaction of radiation with 
an isolated line, under which the small-level 
approximation holds. Nevertheless, sufficiently general 
prerequisites for explanation of the effect exist also for 
the case of the absorption line wing œclearing upB. 

The first of them is in the decisive role of the 
classic intermolecular interaction potential V in 
formation of the periphery of the spectral line contour. 
The detailed argumentation to that was firstly given in 
Ref. 6, and now this opinion is universally accepted.7,8 
The potential V appears in the description of classic 
centers of mass of colliding molecules, with which its 
name is, in fact, associated. 

 
 

Another prerequisite is in the definition of V itself 
as a corresponding quantum mean over intramolecular 
degrees of freedom z of the Coulomb energy U(z; q) of 
intermolecular interaction; q are the coordinates of 
centers of mass. The particular variants of the V 
definition are represented by the quantum chemistry 
equations,9 the method of semiclassical 
representation,10 the methods of the statistical physics 
of molecules,11 and so on. 

To take into account the influence of strong 
enough electromagnetic field on the spectral line 
contour, the term describing the interaction of the field 
with an absorbing molecule should be added to the 
Hamiltonian of a free molecule. This term influences 
the classic potential and the absorptance in the line 
wing.12 The summarized contribution of many far wings 
of the spectral lines determining the absorption beyond 
the band edge turns to be œan amplifierB of weak 
nonresonance interaction between optical radiation and 
a single molecular transition. 

The presented qualitative pattern is far from the 
common interpretation of the saturation effect of the 
resonance absorption, although the dependence of the 
absorptance in a line wing on the radiation intensity 
iw(I) presented further reminds in appearance the 
behavior of i(I) in the saturation effect. It should be 
noted that the saturation effect disappears very quickly 
if the radiation frequency ω is tuned away from the 
molecular transition frequency ω0 by greater than 
several halfwidths of the absorption line γ (Fig. 1). The 
effect of œclearing upB in the absorption line wing is 
observable at the tuning |ω $ ω0| ≈ 50 γ and, as it 
will be shown further based on the analysis of the 
experimental data from Refs. 5 and 12, it is determined 
by the œnewB field-depended potential of intermolecular 
interaction, which should be substituted into the 
standard expression for the absorptance i(ω).  
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FIG. 1. Saturation of absorption  in the 694.38 nm line 
of H2O in air (P = 1.01⋅105

 Pa). I = 10$2 MW/cm2 (1) 
and 10 MW/cm2 (2). 

 

The aim of the given paper is a sequential analysis 
of an influence of the intense laser radiation field on 
the potential of intermolecular interaction in order to 
explain the experimental results on the dependence of 
the absorption in the H2O line wing and the time of 
the H2O vibrational relaxation on the laser radiation 
intensity under nonresonance interaction from unified 
point of view. 

 

EXPERIMENTAL DATA ON THE FUNCTION i(I) 

IN FAR WING OF SPECTRAL LINE 
 

A detailed description of the experiments 
determining the i(I) function at |ω $ ω0| >> γ can be 
found in Refs. 3, 5, and 12. The dependence of the 
H2O and D2O vapor absorption on the pulsed CO2-
laser radiation intensity at 10.6 μm wavelength was 
measured by optoacoustic method. The optoacoustic 
spectrometer comprised of the pulsed CO2-laser, the 
system for recording of the laser pulse characteristics 
(pulsewidth and a shape of time sweep, energy in a 
pulse, wavelength), the optoacoustic detector (OAD) 
with the wideband amplifier for measuring the energy 
of optical radiation absorbed by gas, and the vacuum 
system for preparing gas mixtures. 

The shape of the CO2-laser radiation pulse is 
typical, i.e. it has a peak of 300 ns width at halfheight 
emboding 50% general energy of the pulse and a slow 
decay of 1 μs duration. The optoacoustic receiver with 
the wideband amplifier and cylindrical gas cell of 30 
mm diameter and 150 mm length was used to determine 
the energy absorbed by gas at various values of the 
radiation intensity at the OAD gas cell input. 

The measured parameter is given by the relation 
 

A(I) = 
U(I)
W

 = α∼ 
 
Eabs 

W
 = 

= α∼ ⌡⌠
0

τ

 i(I(t)) I(t) dt / ⌡⌠
0

τ

 I(t) dt, 

 

where U is the amplitude of an electric pulse at the 
OAD amplifier output; W is the energy of the laser 
pulse; τ is the pulsewidth; I(t) is the time- dependent 

intensity; α∼ is the experimentally determined 
calibration constant characterizing the magnitude of the 

energy absorbed in the cell at given values of W or I. 
In the presented below Figs. 2 and 3, the behavior of 

the ratio A 
∼
 = A(ω, W)/A(ω, W → 0) is shown, i.e. 

the ratio of the energy absorbed by gas at large values 
of W to the corresponding energy at W → 0. The 
effective pulsewidth can be given as τ = 

= ⌡⌠ t I(t) dt/W, so, the mean intensity is I = W/τ. 

The experimental data for characteristic W-dependence 

of A 
∼
 for pure H2O and D2O vapor as well as for binary 

mixtures of H2O and N2 are presented in Figs. 2 and 3. 

The error of A 
∼
 measurement does not exceed 10$12%. 

The observed decrease of A 
∼
 at W growth is much 

greater than the measurement error. 
 

 

 

FIG. 2  Dependence of H2O (1) and D2O (2) vapor 
absorptivity (P = 1330 Pa) on the intensity of the 
pulsed CO2-laser radiation of 10.6 μm wavelength. 
 

 
 

FIG. 3. Absorptivity dependence of the mixture of 
H2O vapor with nitrogen (1) at P = 105 Pa and in 

pure N2 (2) (PN
2
 = 1.3⋅103 Pa) on the intensity of the 

pulsed CO2-laser radiation of 10.6 μm wavelength. 
 

THEORY OF THE œCLEARING UPB EFFECT IN 

SPECTRAL LINE FAR WING 

 
We will use the following notations in our 

presentation: � ( )H x1  is the Hamiltonian of the active 
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(interacting with the field) molecule, where x is the set 

of intermolecular coordinates; � ( )
ρ

1  is the Gibbs density 

function; �

H R1  is the Hamiltonian of the absorbing 
molecule interaction with electromagnetic field of 

optical radiation; symbols a, b; |a>, |b>; W
a

( )1 , W
b

( )1  

are for quantum indices, wave functions, and 

eigenvalues of � ( )H x1 ; the analogous notations are used 

for description of the buffer gas molecule: � ( )H y2 , y, 

�
(ρ 2), α, β; |α>, |β>; W

α

(2), Wβ
(2). U(x, y, r(t; r, v)) is 

the Coulomb potential of interaction between the first 
and the second molecules, where r(t; r, v) is the vector 
describing the classical trajectory of relative motion of 
the center of mass under initial condition r(0; r, v) = r 
and initial velocity v. (The quantified centers of mass 
are denoted further as s). 

Notations Ĉ and Ŝ denote the evolution operators 
in the Schrödinger equation 

 

( )i
C

t

H H U t C H t C t�
∂

∂

�
� � ( ) � � ( ) �( )= + + ≡1 2 ,  (1) 

 

( )i
S

t

H t H x t SR�
∂

∂

�

( ) ( , ) �= + 1 .  (2) 

 

The initial relation for the classic potential is 
given as 

 

V S t U S txy=
−

Sp � �
� ( ) (0) �( )

( ) (2)
ρ ρ

1 1 ,  (3) 

 

where Spxy is the œspurB operation over x and y. The 
relation (3) well corresponds to quantum definition œan 
operator of one of subsystems.B But, strictly speaking, 
the œstartB expression for interaction potential should 
be 
 

V
∼
 = Spxy S

∼
$1 ρ̂0 

∼̂
S$1 U(x, y, r)  (4) 

 

with ρ̂0 $ the Gibbs density matrix for the molecular 

system (its Hamiltonian is 
∼̂
H = H1 + H2 + U(x, y, s) + K̂, 

where K̂ is the operator of the kinetic energy of centers 

of mass) and the operator 
∼̂
S is the solution of equation 

of the type (2) with 
∼̂
H instead of Ĥ(t). However, 

∼
V is 

an operator relative to s, what presents absolutely 

unnecessary complexity in the description of the classic 

centers of mass behavior. The method of semiclassical 

representation10 solves this problem by using Eq. (3). 

Naturally, Eq. (3) should be statistically averaged since 

Eqs. (1)$(3) describe a binary collision. Detailed 

description of this operation, as well as some notes 

concerning Eq. (3) is presented below. 

Technically, this procedure is absolutely standard: 
for Eq. (2) we introduce the representation of 

interaction Ŝ = Ĉ B̂ with ordinary Neimann series in 

powers of Ĥ1R ) relative to B̂. Its substitution into 
Eq. (3) gives an expansion in strength powers of the 
optical wave electromagnetic field. Let us write the 
first terms of the expansion 

 

V = SpxyĈ(t) ρ̂(1) ρ̂(2) Ĉ$1(t) × 

×
⎩⎪
⎨
⎪⎧
U(0)

 

 
+⌡⌠

0

∞

 
  dt1[U(0),Ĉ(t1)Ĥ1R(t $ t1)Ĉ$1(t1)]+ 

+⌡⌠
0

∞

 
  dt1⌡⌠

0

∞

 
  dt2[[U(0),Ĉ(t1)Ĥ1R(t $ t1)Ĉ$1(t1)], 

⎭⎪
⎬
⎪⎫

Ĉ(t2)
 
Ĥ1R(t $ t2)

 
Ĉ$1(t2)] + ... .  (5) 

 

The first term presents the œfieldlessB situation, 
and, following Ref. 13, the thermodynamical limit is 
sufficient here 

 

SpxyĈ ρ̂(1) ρ̂(2) Ĉ$1 U(0) ≡ Spxyĝ(t) U(0) = 

= Spyz 
1
Z

 exp⎝
⎛

⎠
⎞

$ 

H1 + H2 + U(x,y,r)

kΘ  U(x, y, r), 

(6) 
 

where k is the Boltzmann constant; Θ is the 
temperature, Z is the normalizing multiplier  
(Spxy ĝ = 1). 

The Hamiltonian Ĥ1R for the case of 
monochromatic radiation is 

 

Ĥ1R = Ω̂( )A e$iωt + A* eiωt   (7) 
 

with matrix elements Ωba = <b⏐Ω̂⏐a> = $ 
i
c
 μbaωba, 

where μba is a matrix element of the active molecule 

dipole moment projection on the direction of the field 
polarization; c is the speed of light; and ωba = 

= (W(1)
b  $ W(1)

a )/�. The vector potential amplitude A 

is related to the field intensity as I = ⎝
⎛

⎠
⎞ω2

2πc
⋅⏐A⏐2. In 

the case of pulse radiation with pulsewidth τ, ⏐A⏐2
 

should be substituted by 
1
τ ⌡⌠

0

τ

⏐A⏐2
 

 dt. A substitution of 

Eq. (7) into the second term of Eq. (5) will imply an 
appearance of rapidly oscillating multipliers 
exp(± iωt), which are absolutely unessential in 
description of statistical and dynamical properties of 
classical centers of mass.14 So, the second term in 
Eq. (5) can be omitted, what immediately extends to 
all members of the series (5) with odd powers of the 
field. 
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The first nonvanishing order of the perturbation 
theory, i.e. the third term of Eq. (5), is to be 
calculated according to the scenario œperiphery of the 
contour.B6 An efficient approximation for Eq. (1) is 

 

<aα⏐Ĉ⏐bβ> ≅ δabδαβ exp

⎝
⎜
⎜⎛

⎠
⎟
⎟⎞1

i�
 ⌡⌠
t
0

t

Waα(t′) dt′  

 

with Waα(t) = W(1)
a  + W(2)

α  + 
∼

Waα(t) being 

eigenvalues of Ĥ(t) and t treated as a parameter; the 

sense of 
∼

Waα is quite evident. It is clear that t0 is the 

start of collision and t0 ∈ τ. An averaging over such 
uncertain parameter is usual for the binary variant, so 

the corresponding operation (1/τ) ⌡⌠
0

τ

 dt0(...) is certain. 

The appearing then integrals (structurally simple) with 
t1 and t2 are estimated asymptotically from the 
parameter proportional to the greater biased frequency 
⏐ω $ ω j⏐ (œline indexB j is the set of the transition 
quantum numbers). Therewith the method of stationary 
phase is applicable, what is exactly proved. The essence 
of simplifications is in elimination of oscillating terms. 

A noticeable role here is played by ⌡⌠
 
 dt0 and, mainly, 

by the choice of identical stationary points for t1 and 
t2. The same requirement confines the summation 
indices. The only heuristic element here is a œbreak in 
summationB in the combination 

 

∑
aα

<nα⏐ĝ U(0)⏐aα> (...)aα → 

→ ∑
aα

<aα⏐ĝ U(0)⏐aα> ∑
aα

ρ a
(1) ρ α

(2) (...)aα  

 

in order to use Eq. (6). (ρ a
(1) and ρ α

(2) are the 

eigenvalues of ρ̂(1) and ρ̂(1)). Generally speaking, such 
procedure is rather popular: first we address ourselves 
to the laws of the mean and then replace the 
mathematical mean by the statistical one with the 
density function ρ̂(1) ρ̂(2) corresponding to the 
operation Spxy. 

The result of simplification of Eq. (5) looks like 
 

V = V0 
⎝
⎜
⎛

⎠
⎟
⎞

1$ 

⏐A⏐2

�
2 ∑

j

 
 ∑
α

ρ a
(1)ρ α

(2)|Ωba|
22Re Π(tbaα)+... . 

(8) 
 

where ∑
j

 is a sum over spectral lines centered at ωba > 0 

(quantum transition a → b). Π denotes the asymptotic 
value of the integral 

Ξ(2) = ⌡⌠
0

∞

 dt1 ⌡⌠
t1

∞

 dt2 e
i(f(t1) $ f(t2)), 

f(t) = (ω $ ωba)t $ 
1

�
 ⌡⌠
t0

t

(Wbα $ Waα) dt′  (9) 

 

and tbaα is the root of equation 
 

Wbaα(t) = ω $ ωba , 

Wbaα(t) = 
W
∼

bα(t) $ W
∼

aα(t)

�
 ,  (10) 

 

being equivalent to f′(t) = 0, i.e. a definition of a 

stationary point. It is seen from the structure of Ĥ(t) 
in Eq. (1) that Eq. (10) depends only on 
intermolecular space; so, r′baα is in fact the root of 
Eq. (10); tbaα results then ⏐r(t; r, v)⏐ = r′baα. 

The final solution of Eq. (9) is preceeded by 
classifying the classic trajectories of centers of mass 
illustrated by Fig. 4; the corresponding analysis 
combines exact relationships of the classic mechanics 
and the asymptotic estimate (9). As it becomes clear, at 
r ≥ r′ the main contributors are the trajectories like (I), 
f″(tbaα) = 0, and 

 

2Re Π(tbaα) = 
(3!)2/3

3  Γ2

⎝
⎛
⎠
⎞1

3  
1

⏐(∂3f/∂t3)tbaα⏐2/3 

 

with Γ-function. If r < r′, then the trajectories of type 
(II) should operate, for which f″(tbaα) ≠ 0 and 

 

2Re Π(tbaα) = 
2π

⏐(∂2f/∂t2)tbaα⏐ . 

 

 
 

FIG. 4. Trajectories of the colliding molecules: the 
plane r(t; r, v) (1 and 2); P1 P2 is a portion of 

circumference of r′baα radius (indices are omitted); O1 
and O2 are the initial points of the trajectory with 
r ≥ r′ (I) and r < r′ (II); 0P3 is a minimum distance 
from the center (in the classic problem about binary 
collision) for the trajectory I. The initial velocity is 
v = vrer + vϕeϕ with unit vectors er and eϕ of the 
curvilinear coordinate system in the point r. 
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Then the concept of œdetermining multifield,B well 
justified in Ref. 9, is worthy to be used: the 
approximation Wbaα = γbaα/sν is sufficient for 

Eq. (10); ν is the minimal order of this multifield (in 
fact, in the Coloumb potential U(x, y; r) of quantum 
Hamiltonian from Eqs. (1) and (2)), for which the 
corresponding constant γbaα and (ω $ ωba) are of the 

same sign (then r′baα = (γbaα/(ω $ ωbaα))
1/ν ). Now in 

(∂2f/∂t2) and (∂3f/∂t3) from Eqs. (9) and (10) with 
their properties enumerated, the derivatives with 
respect to s can be calculated immediately and the 
derivatives of r(t; r, v) with respect to t corresponding 
to r′ can be expressed through r = | r | and the 
components of v by means of exact formulas of the 
classic problem on binary collision. The obvious 
simplifications are based on the statement being 
realistic for nonresonant variant (see, for example, 
Ref. 15), that r′ is in the vicinity of the classic 
potential minimum. Then 

 

1

⏐∂3f/∂t3⏐2/3  ≅ 
1

(v⏐ω $ ω0⏐)2/3  
r′8/3

r′4/3 v ϕ
4/3  , 

1

⏐∂2f/∂t2⏐  = 
r′

v⏐ω $ ω0⏐  
1

vr
2 + vϕ

2  , 

 
where ω0 plays the role of the line center. The last step 
is rather important. It approximates Eq. (3) to exact 
Eq. (4) by taking into account quantum fluctuations in 
the dynamics of the centers of mass. By analogy with 
the method of semiclassical representation, this 
procedure can be expanded to the statistical part of the 
problem by averaging over vr and vϕ with the 
distribution function G(t, vr, vϕ), the necessary 
equation for which can be found in Ref. 10. It follows 
from the very essence of the problem under treating 
that the probability of the shift from r to r′ for time t 
for the classical trajectory with initial r and v should 
be known; the former asymptotic ways give the 
following estimates for the trajectories of types (I) and 
(II) (see Fig. 4) 
 

τ ≅ 
r′
r
 2r′ 

1
vϕ

 r $ r′,    τ ≅ 2r r′ $ r 
1
vϕ

 . 

 
Of course, the general rules of the probability 

theory allow finding of the desired probability through 
G(t, vr, vϕ). 

But a serious handicap to such program is in the 
complexity of the problem of G. So, we have to use the 
œmodelB solution based on the fact that G complies 
with an equation of the Fokker-Planck type. We choose 
the simplest œdiffusiveB variant for the conditional 
probability of the shift 

Φ = 
1

(πDτ)1/2 e
$(r $ r′)2/4Dτ , 

declaring D as œthe coefficient of quantum diffusion.B 
Obviously, Φ should be then multiplied by the 
molecule velocity distribution. It is reasonable to take 
the Maxwell distribution, and then the appearing 

⌡⌠ dvr  dvϕ can even be expressed through the special 

functions. But it is hardly worth to be done if the 
œmodelB description of Φ is remembered; so, for the 
sake of estimates, we replace vr and vϕ with the 
corresponding statistical mean values. 

Summarizing all the mentioned details of the 
problem, we will have got in Eq. (8)  

 

2Re Π(tbaα) = 

 

= 
(3!)2/3

3  Γ2(
1
3) 

1

( 2πD)1/2
 

1
(v⏐ω $ ωba⏐)2/3 × 

× 
1

V ϕ
5/6 

r′ 23/12 baα

r5/6  
1

(r $ r′
baα)

1/4 × 

 

× exp 
⎝⎜
⎛

⎠⎟
⎞$ 

r

r′
baα

 
vϕ

4D 2 r′
baα

 (r $ r′
baα)

3/2   (11a) 

 

at r > r′
baα , 

= 2 
⎝
⎛

⎠
⎞π

2 D

1/2
1

v⏐ω $ ωba⏐ 
1

(r′
baα $ r)1/4 

r′
baα

r1/4 × 

× 
vϕ

vr
2 + vϕ

2 exp 

⎝⎜
⎛

⎠⎟
⎞$ 

r

r′
baα

 

vϕ

4D 2 r′
baα

 (r $ r′baα)
3/2  (11b) 

at r < r′
baα , 

 

= 
(3!)2/3

3  Γ2(
1
3) 

1
(v⏐ω $ ωba⏐)2/3 

r′ 4/3 baα

vϕ
4/3   (11c) 

at r = r′
baα . 

 
COMPARISON OF THE THEORY AND THE 

EXPERIMENT 

 

For rigorous quantitative comparison of the above-
described theoretical results and the experimental data 
from Section 2, the values of γbaα and ν. are required. 

These quantities can be obtained from solution of rather 
cumbersome inverse problem. They occur to be œstepB 
functions of the biased frequency (frequency tuning).6 
In addition, Eq. (11) includes the constant D being 
declared now as empirical. Nevertheless, the above-
presented solution makes the preliminary analysis from 
Refs. 5 and 12 much more accurate in many respects. 

Note, first of all, that the absorption coefficient ij 
of the jth line centered at ωj = ωba in the linear, over 
the field, approximation is expressed as  
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ij(ω) ∼ F = 
1

r′
baα

 

⌡
⎮
⌠

0

r′baα

s exp ($ V(s)/kΘ)  ds

r′ 2  
baα  $ s2

  (12) 

 

and F owes its origin to the Gibbs probability of 
intermolecular space r (Ref. 6). The Lenard-Jones 
potential V = ε((σ/s)12 $ (σ/s)6) is plotted in Fig. 5; 
ε and σ are standard parameters of the potential. It was 
determined in Ref. 16 that r′

baα  

values filled the interval ≅ 3 $ 4 D (for H2O and  
D2O molecular lines) under self-broadening and  
r′
baα ∈ ≅ 3 $ 3.6 D under broadening by N2; δ = 3.12D 

for H2O$H2O pair and δ = 3.19 for H2O$N2 (ε/k is 
equal to 506 K and 217 K, respectively). Therefore, we 
occur in a region where a decrease of the potential 
causes a decrease of the absorption (Eqs. (8) and (11) 
testify to such I-dependence of V). 
 

 

 
FIG. 5. Behavior of function F(R) for Lenard-Jones 
potential. ε/k = 75 K (1), 450 K (2), 600 K (3), 
750 K (4); Θ = 300 K. 
 

In order to refine the nonlinearity character we 
extend the series (5) and then (8). The former 
asymptotical techniques give the following expression 
for the summand proportional to the fourth power of 
the field: 

  

+ 
1

�4
 ⏐A⏐4V0(r)2Re ∑

i

  ∑
α

ρ(1)
a ρ(2)

α ⏐Ωba⏐4 Ξ(4)(tbaα) , 

Ξ(4) =⌡⌠
0

∞

 dt1 ⌡⌠
t1

∞

 dt2 ⌡⌠
t2

∞

 dt3 ⌡⌠
t3

∞

 dt4 ei(f(t1) 

$
 

f(t2) 

+
 

f(t3) 

$
 

f(t4)), 

 

which shows the computational procedure to hold for 
the consequent members of the expansion (5) as well. 
The appearing series of the perturbation theory becomes 
summable, so 
 

V = V0(r) 2Re ∑
j

 ∑
α

 ρ(1)
a  ρ(2)

α (Qjα(J))av ,  (13) 

 

Q(J) = 

1 $ 2ξ
1 + ξ  , 

 

ξ = 
1
32 Γ2 

⎝
⎛
⎠
⎞1

3   
2πcJ

ω2�2
  

(3!) 2/3

|∂3f/∂t3|2/3 , for (11.a) and (11.c), 

Q(J) = 
1 $ 3ξ
1 + ξ  ,   ξ = 

π2cJ

ω2�2
  

1
|∂2f/∂t2|  for (11b). 

The indices jα are connected with substitution of 
tbaα and execution of the operation (...)av i.e. averaging 
over quantum fluctuations. Plot of Q(J) fully 
corresponds to Figs. 2 and 3, and numerical estimates 
give the proper order of œsaturation straight line.B 

When treating the isotopic (μ is the mass of a 
molecule) variations of the effect, we, first of all, have 
to settle the question of D. Physical sense of Φ almost 
forces us to assume D ∼ 1/μ. An appearance of the 
velocity v is stipulated by the common statistical sense 
of the diffusion coefficient; and the de Broglie 

wavelength � corresponds to quantum origin of Φ: at 

� → 0 œthe quantum influenceB should disappear. Since 

� ∼ 1/pulse, then D ∼ 1/μ. A similar estimate will 

arise when the coefficient of œmicroscopicB diffusion (in 
terms of Ref. 17) is expressed through the similar 
viscosity with the same dependence of the latter on μ as 
in statistical physics.18 

Assuming all velocities in Eq. (11) to be ∼ 1/ μ, 
we obtain, that Eqs. (11.a) and (11.b) are proportional 
to 
 

μn e$u μ ;    n, u > 0. 
 

Conceptually empirical u should be declared such 
that m will fall on the decreasing portion of the latter 
function (the variant (11.c) falls out of this scheme, 

but it is only one line from ∑
j

 , and, moreover, a 

coincidence of r and r′ might be sooner random). A 
simple calculation convinces that then after writing 
D = η/μ we will have an estimate of the constant 

η ≅ 0 (10$27g⋅cm2/s), i.e. η = 0(�), which perfectly 

agrees both with quantum sense of D, discussed earlier, 
and the preliminary quantitative arguments. 

A dependence of intermolecular interaction 
potential on the intensity of nonresonance optical 
radiation, stipulating the œclearing upB effect in the 
line wing due to decrease of V at I increase, should 
also result in a specific change of time of the 
vibrational-translational relaxation (τVT). Just as the 
absorptance in a line wing, the probability VT of the 
relaxation wVT is determined through V(R). According 
to Ref. 19, the semiclassical representation in the first 
order of the perturbation theory for the simplest 
situation of diatomic molecule interaction with a 
neutral atom gives 

wVT =⏐xvv′

⌡⎮
⌠

$∞

+∞

V′(R)

�
  exp 

⎣⎢
⎡

⎦⎥
⎤i

�
 (Ev $ Ev′) t  dt⏐

2

,  (14) 

where xvv is a matrix element of x = r $ re (re is an 
average size of nonvibrating molecule); Ev ,  Ev′ are 
molecule energies in vibrational states v and v′, 
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correspondingly; V′(R) ∼ 
~

β V(R), where V(R) is 

classic potential of intermolecular interaction; 1/
~

β  is a 
characteristic width of the potential well. The 
foregoing theoretical analysis shows, that the decrease 
of V at I increase should imply the corresponding 
decrease of wVT and, consequently, a growth of τVT 
under nonresonance excitation of molecule.  

This situation is exactly the opposite to what 
eventuates under resonance excitation of molecules by 
intense laser radiation causing a saturation of 
absorption in the vibrational transition. The absorption 
coefficient in this case lowers at a growth of radiation 
intensity, but magnitude of τVT decreases. There are 
experimental data on SF6, CH3F, and diacetile 
resonance excitation4,23 testifying to noticeable (several 
times) increase of VT relaxation rate; as well the 
measurements are presented in Ref. 24 pointing to the 
vibrational-vibrational exchange rate in mixtures 
CH4:SF6 and CD4:CH4 exposured to the CO2-laser 
high-power radiation of 10.6 μm wavelength. The 
decrease of the vibrational relaxation time in strong 
resonance field is stipulated by intra- and intermode 
vibrational exchange, anharmonicity of vibrations, and 
heating of gas.4 

The difference in the behaviors of VT relaxation 
time in the cases of resonance and nonresonance 
excitation of small molecules (CO2 and H2O) by 
intense radiation of the pulsed CO2-laser was first 
described in Ref. 24. The experimental results can be 
interpreted as a consequence of the above-discussed 
mechanism of the strong field action on interaction of 
molecules. We will cite them briefly. 

 

EXPERIMENT ON DETECTION OF τVT 
DEPENDENCE ON THE RADIATION INTENSITY 

 

The dependence of τVT on the pulsed CO2-laser 
radiation intensity (10.6 μm wavelength) in CO2 and 
H2O vapor was measured using the optoacoustic 
method as well as the earlier measurements of the effect 
of absorption saturation in CO2 (Ref. 20) and the 
œclearing upB in the H2O line far wing (Ref. 5). The 
method of τVT determination is as follows: when the 
gas, filling the OA detector cell, absorbs the pulse laser 
radiation, a pressure pulse is produced, which then is 
recorded with microphone. The amplitude of the 
electric signal, taken off the microphone, is written as 

 

U = C⋅ΔP⋅ε(p) ,  (15) 
 

where ΔP is the pressure gain in the OA cell due to gas 
heating; p is the total gas pressure in the cell; ε(p) is a 
coefficient describing a change of elasticity properties 
of the microphone membrane under variation of p; C is 
the calibrating constant of the given OA cell 
independent of p. 

At low gas pressure in the cell, ΔP is determined 
by competition of the processes of VT relaxation and 
deactivation of the vibrationally excited molecules on 
the cell walls 

ΔP = (γ $ 1) 
ilE
Q

 ⋅ F(wVT, wT, wd, τ) ,  (16) 

 

where γ is isentropic exponent; i is the absorption 
coefficient of the gas under study; l and Q are the 
length and the volume of the OA cell; wVT and wT are 
the rates of VT and thermal relaxation; wd is the rate 
of molecules deactivation in their collisions with wall. 

In the case of the gas excitation by short pulses at 
τ << τVT(p), τd(p), τT(p), the function F is22 

 

F(wVT, wd, wT) = 

= 

 
wVT 

wVT + wd
 ⎝
⎛

⎠
⎞wVT 

+
 
wd

wT

$ wT/(wVT + wd $ wT)

,  (17) 

 

where wVT = wVT
0

⋅p; wT,d = wT
0
,d/p, (index 0 

corresponds to pressure !0 = 1 mm Hg). The values of 
wT ,  wd can be calculated from the known radius of 
the OA cell and the coefficients of molecular diffusion 
in the ground and excited vibrational states.22 Function 
ε(p) for the given microphone is found by the electric 
activation method23; τVT at various I can be found from 
the measured values of ΔP, i, E, and calculated wT ,  
wd using Eqs. (16) and (17). A particular example of 
this procedure use is described in Ref. 21; and the 
function τVT(I)/τVT(0) for CO2 and H2O, obtained 
experimentally, are presented in Fig. 6, which shows a 
qualitative difference between τVT(I) functions in the 
cases of resonance (CO2) and nonresonance (H2O) 
absorption in vibrational transition. 
 

 

 

FIG. 6.  Dependence of the vibrational relaxation time 
of H2O (nonresonance excitation) and CO2 (resonance 
excitation) on the intensity of the CO2-laser radiation. 
 

In the case of resonance excitation of vibrational 
transition in CO2, the increase of I is accompanied by 
decreasing VT relaxation time, because at 
I ∼ Isat ≅ 0.3 MW/cm2 the ratio τVT(I)/τVT(0) ≅ 0.6. 
This result well agrees with the data of Ref. 4 and 
references therein, where the shortening of VT 
relaxation time under resonance excitation of complex 
molecules by intense laser radiation was observed.  
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Under excitation of H2O molecules by 
nonresonance radiation in far wing of a spectral line, 
the time of the VT relaxation increases at a growth of 

I. The growth begins at I ∼> Iw, where Iw is the 

threshold intensity of the œclearing upB effect in the 
H2O spectral line wing ( ~ 2$2.5 MW/cm2). The 
physical cause of such increase of τVT is a dependence of 
the intermolecular interaction potential on I, i.e. just 
the mechanism considered above, which describes the 
absorption of intense optical radiation by spectral line 
wings. 

 

CONCLUSION 
 

The considered theoretical model of the influence 
of the optical strong field on interaction of molecules in 
a gas allows a uniform interpretation of nonresonance 
nonlinear effects in light absorption and vibrational 
kinetics. A characteristic property of these effects is 
that in the case of nonresonance interaction of the 
intense optical radiation with vibrational transition in a 
molecule, the absorption suffers saturation (just as in 
the case of resonance interaction), whereas the 
dependence of the vibrational relaxation time on the 
radiation intensity is opposite to that in the case of 
resonance excitation. A combination of these effects can 
result in complex dynamics of optical characteristics of 
gaseous media in a volume occupied by the laser beam 
and in new peculiarities of self-action of the intense 
optical radiation in molecular media. 

From our point of view, the experimental data on 
light absorption in a line wing and VT relaxation time, 
available now, as well as measurements of the 
dependence of absorption in the wing and VT 
relaxation on the radiation intensity can be used for 
reliable reconstruction of the repulsing portion of 
intermolecular interaction potential in monomolecular 
gases and especially in binary mixtures. These 
experimental data can be obtained with a single 
experimental setup allowing measurements of a 
magnitude of the laser radiation energy absorbed by gas 
and the time of radiationless relaxation of selectively 
excited vibrational state. 
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