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The MC (Markovian chain) flux of events is a mathematical model of the  

fluxes of elementary particles (photons, electrons, etc.). To estimate its state, we 
have derived a recursion formula for the a posteriori probability that is  most 
comprehensive characteristic of the state of an event flux. The decision on the flux 
state is made using a criterion of the a posteriori probability maximum. We present 
here some results of calculations of the a posteriori probability along with the 
results of statistical experiment using an imitation model. 

 
1. INTRODUCTION 

 
Random flux of events is a widely used, in 

mathematical simulation, model of real processes. Thus, 
the fluxes of elementary particles (photons, electrons, 
and so on, coming to the measurement devices), 
information circulating in the computer and 
communication networks may adequately be described 
as a random flux of events. The problems on estimating 
the state and parameters of a random flux of events  
arises in optical and laser systems operating in the 
photon counting mode (for instance, in laser sensing of 
the upper layers of the atmosphere), in optical 
detection, recognition, and tracking systems operating 
through the atmosphere at ultimately long distances, as 
well as in optical systems of communication beyond the 
horizon. 

The majority of authors consider mathematical 
models of the flux of events under the assumption that 
the event occurrence in time is determined without 
errors. However, the devices detecting the events add 
introduce errors into the measurements. These errors 
must be taken into account when making a decision 
based on statistical data. 

In Ref. 1 one may found analysis of an empirical 
algorithm for estimating the states of  MC-flux of 
events. The algorithm is based on consideration of a 
weighting  function of observations that allows for 
aging of the observations. In this paper, we derive a 
recursion relation for a posteriori probability for the 
states of MC-flux of events assuming the occurrence of 
an event to be determined with an error. The decision 
on the state of a flux is made using the criterion of a 

posteriori probability maximum. The a posteriori 
probability is the most comprehensive characteristic of 
a flux state among those that may be obtained from 
only an observation sample available. In this case the a 

posteriori probability gives minimum to full probability 
of making a false decision.2 

 

2. STATEMENT OF THE PROBLEM 
 

We consider a doubly stochastic Poisson flux of 
events with its intensity being a piece-wise constant 
stationary random process λ(t) having two states, λ1 
and λ2 (λ1 > λ2). We shall say that the  process is in 
its first state if λ(t) = λ1 and, otherwise, in the second 
one when λ(t) = λ2. Durations of the process staying in 
one or the other state are distributed according to the 
exponential law Fi(t) = 1$ �xp{$αi t}, i = 1,2, where 
α1 is the rate of change of the first state for the second 
one; α2 is the rate of change of the second state for the 
first one. Within the stationary intervals (when 
λ(t) = λ1 or λ(t) = λ2), the  flux of events observed is 
of Poisson statistics. This flux is called the MC-flux or 
the switching process. Since the process λ(t) is not 
observed and only the occurrence of events is observed, 
it is necessary to estimate the state of a flux from 
observations at a given moment. The measurements of 

the time of an event occurrence contain an error ti = ti
0

 + Δti, where ti are observed times of the events’ 

occurrence; ti
0 are true times of the events’ occurrence; 

Δti are measurement errors which are independent and 
similarly distributed for all i. Let us assume that the 
measurement error is normal, has  zero mean value and 
the variance σ2.  Since measurement errors inevitably 
lead to the confusion of the events (that means that the 

event occurring at the moment ti
0 can be observed at 

the moment ti < ti
0 or ti > ti

0), let us take that σ << 1 
(this indicates that the detecting devices are not so bad 
to change them for others). Thereby, the case of total 
confusion of the events is avoided with a high 
probability (confusion is possible only for neighboring 
events). 

We consider the stationary flux of events, so we 
neglect the transition processes during the observation 
interval (t0, t), where t0 is the beginning of the 
observations, t is the end of the observations (the  
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moment for making  a decision). Then, without any 
loss of generality, one can assume that t0 = 0 and 

0 < ti = t i
0
 + Δti < t. Note that the a priori 

probabilities of the first and second states of the 
process at the time moment t are determined in the 
form 

 

π1(t, t0) = 
α2

α1 + α2
 + ⎝
⎛

⎠
⎞q $ 

α2

α1 + α2
 × 

× exp {$ (α1 + α2) (t $ t0)}; 

 

π2(t, t0) = 
α1

α1 + α2
 $ ⎝
⎛

⎠
⎞q $ 

α2

α1 + α2
 × 

× exp {$ (α1 + α2) (t $ t0)}, 

 

where q is the probability that the first state of the 
process λ(t) takes place at the moment t0. Then, for the 
stationary regime (t → ∞), we obtain the final a 

posteriori probabilities of the states in the form3 
 

π1 = 
α2

α1 + α2
 ,   π2 = 

α1

α1 + α2
 . 

 

Thus, to estimate the state of the unobserved 
process λ(t) at a time moment t, it is necessary to 
determine the a posteriori probabilities 
w(λ1/t1, ..., tn) and w(λ2/t1, ..., tn) that, in the time 
moment t, λ(t) = λ1 or λ(t) = λ2, respectively, (n is the 
number of observations during the time t). Because it is 

valid that w(λ1/t1, ..., tn) + 
+ w(λ2/t1, ..., tn) = 1, it is sufficient to determine 
only one a posteriori probability, for example, 
w(λ1/t1, ..., tn). The decision on the state of a process 
is made by comparing the a posteriori probabilities: if 
w(λ1/t1, ..., tn) ≥ w(λ2/t1, ..., tn), then λ(t) = λ1; 
otherwise, λ(t) = λ2. Finally, let us note that the 
problem of estimating states of  an MC-flux of events 
was solved in Ref. 3 under the assumption that there 
are no errors in measurements of the occurrence time. 

 
3. DERIVATION OF THE TRANSITION 

PROBABILITIES 
 
Let the time vary discretely with a finite step Δt: 

t = kΔt, k = 0, 1, ... . Let us consider a two-dimensional 
process (λ(k), rk), where λ(k) = λ(kΔt) is the value of 
the process λ(t) at the moment kΔt (λ(k) = λ1 or 
λ(k) = λ2), rk = rk(Δt) = r[kΔt] $ r[(k $1)Δt] is the 
number of events observed within the time interval 
((k $1)Δt, kΔt) of the length Δt, rk = 0, 1, ... . 

Let us consider the probability !(λ(k+1), 
rk+1/λ(k),rk) which is the conditional probability that 
the process (λ(k), rk) being in the state (λ(k), rk) , at 
the moment kΔt, will take the state (λ(k + 1), rk + 1) at 
the moment (k + 1)Δt. In other words, 
!(λ(k + 1), rk + 1/λ(k), rk) is the probability of 

transition of the process (λ(k), rk) from one state to the 
other in one step Δt. Then 

 

!(λ(k+1), rk+1/λ(k), rk) = !(λ(k+1)/λ(k), rk) × 

× !(rk+1/λ(k), λ(k+1), rk). (1) 

 

The first factor in Eq. (1) is written as 
!(λ(k + 1)/λ(k),rk) = !(λ(k + 1)/λ(k)) because the 
number of events rk observed within the interval  
((k $ 1)Δt, kΔt) does not influence the value of the 
process λ(t) at the moment (k + 1)Δt (the process λ(t) 
&lives its own life[ ); as to the value λ(k) of the process 
λ(t) at the moment kΔt, it does not depend on the 
prehistory because of the exponential distribution of 
duration of the state λ(k); finally, the measurement 
errors do no effect the state of the process λ(t). 

Now let us consider the second factor in Eq. (1) 
where rk+1 is the number of events observed within the 
interval (kΔt, (k + 1)Δt). Since, generally speaking, 
the measurement errors may result in mixing the events 
along the entire temporal axis the probability 
!(rk+1/λ(k), λ(k+1), rk) can be written in the following 
form: 

 

!(rk+1/λ(k), λ(k+1), rk) = 

= !(rk+1/λ(k),λ(k+1),rk(...,λ
(0),λ(1),...,λ(k),...)). (2) 

 

Let us choose σ << 1 such that the probability of 
transitions between the events  from intervals not 
adjacent to the interval (kΔt, (k + 1)Δt) is sufficiently 
small and we neglect those seldom transitions, i.e., an 

event occurring at the moment ti
0 ∈ ((k $ 1)Δt, kΔt) or 

ti
0 ∈ ((k + 1)Δt, (k + 2)Δt) can be observed only in the 

interval (kΔt, (k + 1)Δt); and the event occurring at 

the moment ti
0 ∈ (kΔt, (k + 1)Δt) can be observed only 

either in the interval ((k $ 1)Δt, kΔt) or in the interval 
((k + 1)Δt, (k + 2)Δt). By virtue of these reasoning, 
Eq. (2) takes the form 

 

p(rk+1/λ(k), λ(k+1), rk) = 

= p(rk+1/λ(k$1), λ(k), λ(k+1)). (3) 

 

Thus, the transition probability (1) takes the form 
 

p(λ(k+1), rk+1/λ(k), rk) = 

= p(λ(k+1)/λ(k)) p(rk+1/λ(k$1), λ(k), λ(k+1)). (4) 

 

Let us first obtain expressions for the probabilities 
!(λ(k+1)/λ(k)). To simplify designations, let us make 
substitutions kΔt = u, (k + 1) Δt = τ. Let us consider 
two adjacent intervals: (u, τ), u < τ, and (τ, τ + Δτ), 
where Δτ is an infinitesimal time interval. Then, it is 
easy to write the differential equation for the 
probabilities !(λ(τ) = λ(k+1)/λ(u) = λ(k)): 
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p′(λ(τ) = λ1/λ(u) = λ(k)) = 

= α2 $ (α1 + α2) p(λ(τ) = λ1/λ(u) = λ(k)), 

p(λ(τ) = λ2/λ(u) = λ(k)) = 

= 1 $ p(λ(τ) = λ1/λ(u) = λ(k)), λ(k) = λ1, λ2, 
 

the solution to which, with the allowance for the 
designations used, can be written in the form 

 

p(λ(k+1)
 = λ1/λ(k) = λ1) = π1 + π2 exp {$ (α1 + α2) Δt}, 

p(λ(k+1)
 = λ2/λ(k)

 = λ1) = π2 $ π2 exp {$ (α1 + α2) Δt}, 

p(λ(k+1)
 = λ1/λ(k)

 = λ2) = π1 $ π1 exp {$ (α1 + α2) Δt}, 

p(λ(k+1)
 = λ2/λ(k)

 = λ2) = π2 + π1 exp {$ (α1 + α2) Δt}, 
 

where π1, π2 are defined above. Thus the transition 
probabilities !(λ(k+1)/λ(k)) in Eq. (4) are determined 
by the formulas presented above. 

Now let us determine the probability  
!(rk+1/λ(k$1), λ(k), λ(k+1)). First of all, we state the 
problem on finding the probability distribution for the 
number of transitions through the right boundary 
(k + 1)Δt of the interval (kΔt, (k + 1)Δt) for the events 

occurring at the moments ti
0 ∈ (kΔt, (k + 1)Δt). Let us 

denote the numbers of events occurring at the moments 

ti
0 in the interval (kΔt, (k + 1)Δt), as it is shown in 

Fig. 1. In this Figure, the intervals between neighbor 

events are designated as (τi = ti$1
0  $ ti

0, i = 2, 3, ..., 

τ1 = (k + 1)Δt $ t1
0). Since Δt is small, the value 

λ(t) = λ(k) (λ(k) = λ1 or λ(k) = λ2) is supposed to be 
constant for t ∈ [kΔt, (k + 1)Δt]. 

 

 
FIG. 1. Illustration of event transitions through the 

right boundary of the interval (kΔt, (k + 1)Δt). 
 

Let us consider the time moment t1
0 and fix the 

value τ1. Then, because of measurement errors, the first 
event can cross the right boundary (k + 1)Δt of the 
interval thus being observed in the adjacent interval 

(see Fig. 1). This takes place if t1 > t1
0 + τ1.  Then, at a 

fixed τ1, the probability of this event can be written in 
the form 

 

P1(τ
(1) = τ1) = P(t1 > t1

0 + τ1) = 
 

= 

1

2π σ
 ⌡⌠
t
0
1+τ1

+∞

 exp 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

$ 
(t1 $ t

0
1)

2

2σ2  dt1 = t  ⎝
⎛

⎠
⎞$ 

τ(1)

σ  . 

 

Here and below t (=) = 
1

2π
 ⌡⌠
$∞

a

 exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
x

2

2
 dx. 

Similarly, the second event can cross the right 
boundary (k + 1)Δt of the interval for the fixed τ1 and 

τ2, if t2 > t2
0 + τ1 + τ2. Then 

 

P2(τ
(2)

 = τ1 + τ2) = P(t2 > t2
0 + τ1 + τ2) = t  ($ τ(2)/σ). 

 

Finally, the jth event can cross the right boundary 
(k + 1)Δt of the interval for the fixed  τ1, ..., τj, if 

tj > tj
0 + τ1 + ... + τj. Then 

 

Pj(τ
(j) = τ1 + ... + τj) = P(tj > tj

0 + τ1 +...+ τj) = 

= t  ($ τ(j)/σ),    j = 1, 2, ... . (5) 
 

Let us consider a random value nj that may take 
two values, 0 and 1. When crossing the boundary  
(k + 1)Δt, nj = 1, otherwise, nj = 0. Here nj takes the 
value 1 with the probability Pj(τ(j)), and value 0 with 
the probability 1 $ Pj(τ(j)). Then the probability 
distribution for the number of events’ transitions 
through the right boundary (k + 1)Δt is nothing but 

the distribution of  the random value n = ∑
j=1

∞

 nj. Note 

that conventional limit theorems for sums of random 
values cannot be applied here because the probabilities 
Pj(τ(j)) depend on j. Let us obtain the characteristic 
function of the random value n because it uniquely 
determines the probability distribution.4 

By definition of the characteristic function,4 and 
because the random values nj are independent, we have 

 

g(x) M {exp (ixn)} = M {
j=1
Π
∞

 exp (ixnj)} = M {
j=1
Π
∞

 znj}, 

 (6) 

 

where i = $1; z = exp(ix), x is the real number. First, 
we average Eq. (6) over the numbers of 0 and 1 states 
of the random value nj  at fixed τ1, τ2, ...: 

 

g(x/τ1, τ2, ...) = 
j=1
Π
∞

 M {znj/τ1, τ2, ...} = 

= 
j=1
Π
∞

 {zPj(τ
(j)) + [1 $ Pj(τ

(j))]}. (7) 

 

By substituting Eq. (5) into Eq. (7), we obtain 
 

g(x/τ1, τ2, ...) = 

= 
j=1
Π
∞

 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(j)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(j)

σ     . (8) 

 

To obtain Eq. (6), it is necessary to average 
Eq. (8) over τ1, τ2, ... .  Since τ1, τ2, ... are 
independent (in the interval (kΔt, (k + 1)Δt), the 

occurrence of events at the time moment ti
0 is a Poisson 

flux with the fixed intensity λ(k) = λ1 or λ(k) = λ2), 
 

p(τ1, τ2, ...) = 
j=1
Π
∞

 p(τj) = 
j=1
Π
∞

 λ(k) exp {$ λ(k) τj}. (9) 
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First of all, let us average Eq. (8) over τ2, τ3, ... . 
As a result we obtain 

 

g(x/τ(1)) = ψ(τ(1)) = 
 

= 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(1)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(1)

σ     ⌡⌠
0

∞

 ⌡⌠
0

∞

 ... × 

 

× 
j=2
Π
∞

 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(j)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(j)

σ     × 

 

× 
j=2
Π
∞

 p(τj) dτ2 dτ3 ... = 

 

= 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(1)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(1)

σ     × 
 

× ⌡⌠
0

∞

 p(τ2)
⎩⎪
⎨
⎪⎧ 

 ⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(2)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(2)

σ     × 

 

× ⌡⌠
0

∞

 ⌡⌠
0

∞

 ... 
j=3
Π
∞

 

⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(j)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(j)

σ     × 

 

× 
j=3
Π
∞

 p(τj) dτ3 dτ4 ...
⎭⎪
⎬
⎪⎫ 

 
 dτ2 = 

 

= 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(1)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(1)

σ     × 
 

× ⌡⌠
0

∞

 p(τ2) ψ(τ(2)) dτ2. (10) 

 

Thus, we find that 
 

ψ(τ(1)) = 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(1)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(1)

σ     × 

× ⌡⌠
0

∞

 ψ(τ(2)) p(τ2) dτ2. (11) 

 

Let us denote f(τ(1)) = {zt  ($ τ(1)/σ) + [1 $ 

$ t  ($ τ(1)/σ)]}. Then, substituting !(τ2) from 
Eq. (9) into the Eq. (11), we have 

 

ψ(τ(1)) = ϕ(τ(1)) ⌡⌠
τ(1)

∞

 ψ(τ(2)) exp {$ λ(k) τ(2)} dτ(2), (12) 

 

where ϕ(τ(1)) = f(τ(1)) λ(k) exp {λ(k) τ(1)}. By 
differentiating Eq. (12) with respect to τ(1), we have 

 

ψ′(τ(1)) = ϕ′(τ(1)) ⌡⌠
τ(1)

∞

 ψ(τ(2)) exp {$ λ(k)
 τ(2)} dτ(2) $  

$ ψ(τ(1)) ϕ(τ(1)) exp {$ λ(k) τ(1)}. (13) 

 

Substituting the expression for the integral from 
Eq. (12) into the Eq. (13) and making simple  
calculations, we obtain 

 

d ln ψ(τ(1)) = d ln ϕ(τ(1)) $  

$ ϕ(τ(1)) exp {$ λ(k) τ(1)} dτ(1).  (14) 

 

Integration of Eq. (14) over the interval from zero 
to τ(1) leads to the following expression for ψ(τ(1)): 

ψ(τ(1)) = 
ψ(0)
ϕ(0)

 ϕ(τ(1)) × 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ ⌡⌠
0

τ
(1)

 ϕ(y) exp ($ λ(k) y) dy  . (15) 

Note that Eq. (10) implies that  
 

lim
τ(1)→∞

 ψ(τ(1)) = lim
τ(1)→∞

 

⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(1)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(1)

σ     × 

× lim
τ(1)→∞

 ⌡⌠
0

∞

 
⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ(2)

σ   + ⎣
⎡

⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ(2)

σ     × 

× p(τ2) dτ2 ... = 1 ⌡⌠
0

∞

 p(τ2) dτ2 ⌡⌠
0

∞

 p(τ3) dτ3 ... = 1. (16) 

 

Let us make the designation q  = ψ(0)/ϕ(0). 
Then, substituting the expression for ϕ(⋅) from 
Eq. (12) into the Eq. (15), we have 

 

ψ(τ(1)) = C λ(k) f(τ(1)) × 
 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ λ(k) 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
0

τ
(1)

 [f(y) $ 1] dy   . (17) 

 

The constant C can be determined from the 
boundary condition (16): 

 

lim
τ(1)→∞

 ψ(τ(1)) = C λ(k) lim
τ(1)→∞

 f(τ(1)) × 

× lim
τ(1)→∞

 exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ λ(k) 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
0

τ
(1)

 [f(y) $ 1] dy   = 1. 

 

Taking into account that lim
τ(1)→∞

 f(τ(1)) = 1, we 

obtain  

C λ(k) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

λ(k) ⌡⌠
0

∞

 [f(y) $ 1] dy  . (18) 

Substituting Eq. (18) into Eq. (17), we find 
 

ψ(τ(1)) = f(τ(1)) exp 

⎩
⎨
⎧

⎭
⎬
⎫

λ(k)
 ⌡⌠
τ
(1)

∞

 [f(y) $ 1] dy  . (19) 

 

From Eq. (10), it follows that, at τ(1) = 0, 
 

ψ(0) = 
z + 1

2
 ⌡⌠

0

∞

 p(τ2) × 
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×
⎩⎪
⎨
⎪⎧ 

 ⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ2
σ   + ⎣

⎡
⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ2
σ     ⌡⌠

0

∞

 p(τ3) × 

× 

⎩
⎨
⎧

⎭
⎬
⎫

zt  ⎝
⎛

⎠
⎞$ 

τ2 + τ3
σ   + ⎣

⎡
⎦
⎤1 $ t  ⎝

⎛
⎠
⎞$ 

τ2 + τ3
σ    dτ3...

⎭
⎬
⎫

 

 

dτ2= 

= 
z + 1

2
 ⌡⌠

0

∞

 ψ(τ2) p(τ2) dτ2 = 

= 
z + 1

2
 ⌡⌠

0

∞

 ψ(y) p(y) dy.  (20) 

 

The characteristic function (6) itself can be 
written, when allowing for Eq. (10), in the following 
form: 

 

g(x) = ⌡⌠
0

∞

 g(x/τ(1)) p(τ(1)) dτ(1) = 

= ⌡⌠
0

∞

 ψ(τ(1)) p(τ(1)) dτ(1) = ⌡⌠
0

∞

 ψ(y) p(y) dy. (21) 

 

From a comparison of Eqs.(20) and (21), we see 

that ψ(0) = 
z + 1

2
 g(x), however, at τ(1) = 0, we have 

f(0) = 
z + 1

2
, so ψ(0) = f(0)g(x). As a result we obtain 

that 
 

g(x) = ψ(0)/f(0). (22) 
 

On the other hand, it follows from Eq. (19), that 
at τ(1) = 0: 

 

ψ(0)

f(0)
 = exp 

⎩
⎨
⎧

⎭
⎬
⎫

λ(k) ⌡⌠
0

∞

 [f(y) $ 1] dy  . (23) 

 

Thus, combining Eqs. (22) and (23), we obtain 
the following expression for the characteristic function: 

 

g(x) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

λ(k) ⌡⌠
0

∞

 [f(y) $ 1] dy  . (24) 

Substituting the expression for f(τ(1)) into 
Eq. (24) (replacing τ(1) in it by the integration 
variable y) and taking into account that z = exp(ix) 

and λ(k)
 ⌡⌠
0

∞

 t  ⎝
⎛

⎠
⎞$ 

y

σ  dy = 

λ(k) σ

2π
, we finally obtain the 

expression for the characteristic function in the form 
 

g(x) = exp 
⎩
⎨
⎧

⎭
⎬
⎫λ(k) σ

2π
 (exp (ix) $ 1)  . (25) 

 

Let us represent Eq. (25) as an infinite series: 
 

g(x) = exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
λ(k) σ

2π
 ∑
n=0

∞

 
[(λ(k)

 σ/ 2π) exp (ix)]n

n!
 = 

= ∑
n=0

∞

 exp (ixn) 
(λ(k)

 σ/ 2π)n

n!
 exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ 
λ(k) σ

2π
 . (26) 

 

On the other hand, it follows from Eq. (6) that 
 

g(x) = M {exp (ixn)} = ∑
n=0

∞

 exp (ixn) p(n). (27) 

 

Comparing Eqs. (26) and (27), we obtain 
 

p(n) = 
(λ(k)

 σ/ 2π)n

n!
 exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ 
λ(k) σ

2π
 . (28) 

 

Thus, the probability distribution for the number 
of transitions through the right boundary (k + 1)Δt of 
the interval (kΔt, (k + 1)Δt) obeys the Poisson law (in 
other words, the flux of the event transitions through 
the right boundary of the interval (kΔt, (k + 1)Δt) is 
also a Poisson flux). Similar proofs can be presented for 
the left boundary kΔt of the interval (kΔt, (k + 1)Δt), 
as well as for the right boundary kΔt of the interval 
((k $ 1)Δt, kΔt) and the left boundary (k + 1)Δt of the 
interval ((k + 1)Δt, (k + 2)Δt). 

Thus, the final number of events observed in the 
interval (kΔt, (k + 1)Δt) is 

 

rk+1 = r k+1
0  $ rk+1

0L  $ rk+1
0R  + r k

0R + rk+2
0L , (29) 

 

where r k+1
0  is the number of events occurring in the 

interval (kΔt, (k + 1)Δt) at times ti
0; rk+1

0L  is the number 
of events crossing  the left boundary kΔt of the interval 
due to measurement errors and observed in the interval 

((k $ 1)Δt, kΔt); rk+1
0R  is the number of events crossing 

the right boundary (k + 1)Δt of the interval 
(kΔt, (k + 1)Δt) and observed in the interval 

((k + 1)Δt, (k + 2)Δt); r k
0R is the number of events 

occurring in the interval  ((k $ 1)Δt, kΔt) at times ti
0

and crossing the right boundary of the interval and 

observed in the interval (kΔt, (k + 1)Δt); rk+2
0L  is the 

number of events occurring in the interval ((k + 1)Δt, 

(k + 2)Δt) at times ti
0 and crossing the left boundary of 

the interval and observed in the interval 
(k + 1)Δt, (k + 2)Δt). 

The probabilities for all these values, but rk+1
0 , are 

determined by Eq. (28). One should only substitute the 
corresponding number of events for n and the value 
corresponding to one or other interval for λ(k). For 

instance, for rk+2
0L , formula (28) takes the form 

 

p(rk+2
0L ) = 

(λ(k+1)
 σ/ 2π)

rk+2
0L

rk+2
0L !

 exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

$ 
λ(k+1)

 σ

2π
 . (30) 
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The probability for value r k+1
0  is determined by 

usual formula for a Poisson flux. 
Now let us suppose that the occurrence time of an 

event  is measured without errors. Then the trajectory 
of the process λ(t), which is a realization of a random 
process, is a determinate function of time until some 
moment in time, kΔt. So the MC-flux can be treated as 
a non-stationary ordinary Poisson flux of events 
without any after-effect.5 Since the errors in measuring 
the occurrence time of an event are independent, the 
properties of being ordinary and the absence of an 
after-effect remain valid in the case when the errors are 
taken into account. Therefore, the MC-flux of events is 
again a non-stationary Poisson flux. Then the 
probability of observing rk+1 events of the flux in the 
interval (kΔt, (k + 1)Δt) is 

 

p(rk+1/Λk+1) = 
(Λk+1)

rk+1

rk+1!
 exp ($ Λk+1), (31) 

 

where Λk+1 = l (rk+1). The number of events rk+1 is 
determined by the relation (29). Then, taking into 
account Eq. (28) and Eq. (30), as an example, we 
obtain 

Λk+1 = Λ(λ(k$1), λ(k), λ(k+1)) = l (rk+1) = 

= l (r0k+1) $ l (r0L
k+1) $ l (r0R

k+1) + 

+ l (r0R
k ) + l (r0L

k+2) = λ(k) Δt $ 
2λ(k) σ

2π
 + 

+ 
λ(k$1) σ

2π
 + 

λ(k+1) σ

2π
 . (32) 

 

Taking into account Eq. (32), the formula (31) is 
written in the form 

 

p(rk+1/Λk+1) = p(rk+1/Λk+1(λ
(k$1),λ(k),λ(k+1))) = 

= p(rk+1/λ(k$1), λ(k), λ(k+1)) = 
1

rk+1!
 × 

× 

⎝
⎜
⎛

⎠
⎟
⎞λ(k)

 Δt $ 

2λ(k)σ

2π
 + 

λ(k$1)σ

2π
 + 

λ(k+1)σ

2π
 

rk+1

 × 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ (λ(k)
 Δt $ 

2λ(k)σ

2π
 + 

λ(k$1)σ

2π
 + 

λ(k+1)σ

2π
)  , 

 (33) 
 

which is nothing but the probability entering in 
Eq. (4) as the second factor. Thus, the transition 
probability (4) is determined completely. 

Considering further the problem stated (i.e., 
performing calculation procedures) requires imposing 
certain restrictions on the values Δt and σ. These 
restrictions follow from formula (33). Considering 
variants of the formula (they are determined by the 
values λ(k$1), λ(k), λ(k+1); all in all there are eight 
variants), we come to the following restriction on Δt 

and σ: Δt > [2(λ1 $ λ2)σ]/(λ1 2π). On the other 
hand, the probability of event transitions from the 
interval (kΔt, (k + 1)Δt) to non-adjacent intervals and, 
inversely, probability of the event transitions into the 
interval (kΔt, (k + 1)Δt) from intervals non-adjacent to 
it must be sufficiently small, so we may require that 
Δt ≤ 3σ. Then the restrictions on Δt take the form 

[2(λ1 $ λ2)σ]/(λ1 2π) < Δt ≤ 3σ. A concrete choice of 
the value Δt at the preset values  λ1, λ2, α1, α2, σ may 
only be performed experimentally, e.g., by way of 
imitation simulation. 

 
4. DERIVATION OF A RECURSION RELATION 

FOR THE A POSTERIORI PROBABILITY 

 

Let rm = (r0, r1, ..., rm) be a sequence of events 
observed during the time interval from 0 to mΔt in the 

subintervals ((k $ 1)Δt, kΔt) of duration Δt, k = 0,m  

(r0 = 0, since the number of events observed in the 
interval ($Δt, 0) at k = 0); λ(m) = (λ(0), λ(1), ..., λ(m)) is 
the sequence of unknown (non-observed) values of the 

process λ(kΔt) at times kΔt, k = 0,m  

(λ(0) = λ(0) = λ1 or λ(0) = λ2). 
Let us denote the joint probability of the values 

λ(m) and rm as W(λ(m), rm). Since the flux of the 
events observed is a Poisson non-stationary flux 
W(λ(m), rm) can be represented as a product of the 
transition probabilities (4) 

 

W(λ(m), rm) = W(λ(0), r0) 
k=1
Π
m

 p(λ(k)/λ(k$1)) × 

× p(rk/λ(k$2), λ(k$1), λ(k)). (34) 

 

Similarly, for m + 1 
 

W(λ(m+1), rm+1) = W(λ(0), r0)  × 

× 
k=1
Π
m+1

 p(λ(k)/λ(k$1)) p(rk/λ(k$2), λ(k$1), λ(k)). (35) 

 

Comparison of Eqs. (34) and (35) leads to the 
following relation: 

 

W(λ(m+1), rm+1) = W(λ(m), rm) × 

× p(λ(m+1)/λ(m)) p(rm+1/λ(m$1), λ(m), λ(m+1)). 
 

Hence, taking into account that 
W(λ(m)/rm) = W(λ(m), rm)/W(rm), we obtain 

 

W(λ(m+1)/rm+1) = 
W(rm)

W(rm+1)
 W(λ(m)/rm) × 

× p(λ(m+1)/λ(m)) p(rm+1/λ(m$1),λ(m),λ(m+1)). (36) 
 

Then the unknown a posteriori probability that 
the state of the process λ(t) at time t = (m + 1)Δt is 
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λ(m+1) (λ(m+1) = λ1 or λ(m+1) = λ2) can be written in 
the form 

 

W(λ(m+1)/rm+1) = ∑
λ
(0)

=λ1

λ2

 ... ∑
λ
(m)

=λ1

λ2

 W(λ(m+1)/rm+1). (37) 

 

Substituting Eq. (36) into Eq. (37), and making 
simple transformations we obtain 

 

W(λ(m+1)/rm+1) = 
W(rm)

W(rm+1)
 × 

× ∑
λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

 W(λ(m$1),λ(m)/rm) × 

× p(λ(m+1)/λ(m)) p(rm+1/λ(m$1),λ(m),λ(m+1)). (38) 
 

The probability W(λ(m$1), λ(m)/rm) can be 
represented as a product of the probabilities 

 

W(λ(m$1), λ(m)/rm) = W(λ(m)/rm) p(λ(m$1)/λ(m), rm). 
 

Let us consider the probability !(λ(m$1)/λ(m),rm). 
This is the conditional probability that the process λ(t) 
came to the state λ(m) from the state λ(m$1) at time mΔt 
provided that of the events have been observed in the 
interval (0, mΔt) (œgiven the present, find the pastB). 
As it was already mentioned above, the process λ(t) 
does not depend on the events observed, so !(λ(m$

1)/λ(m), rm) = !(λ(m$1)/λ(m)), i.e., this is the 
transition probability for the process λ(t) directed back 
into the past. To determine the probability !(λ(m$

1)/λ(m)), we use the Bayes formula.4 For definiteness, 
let us assume that  
λ(m$1)

 = λ1,  λ(m) = λ2. Then we have 
 

p(λ(m$1) = λ1/λ(m) = λ1) = 

= p(λ(m) = λ1/λ(m$1) = λ1) π1/[p(λ(m) = 

= λ1/λ(m$1) = λ1) π1 + p(λ(m) = λ1/λ(m$1) = λ2) π2], 

 (39) 

where π1, π2 are probabilities defined above in Sect. 2. 
Other probabilities are transition probabilities of the 
process λ(t). They are directed to the future from the 
present and are defined in the formula (4). Substituting 
these expressions into Eq. (39) and changing the 
indices, we obtain 

 

p(λ(m$1)
 = λ1/λ(m)

 = λ1) = π1 + π2 exp {$ (α1 + α2) Δt}. (40) 

 

Comparison of the expression (40) with the 
formula for the transition probability !(λ(m) = 
= λ1/λ(m$1) = λ1) from Eq. (4) demonstrates their full 
coincidence, i.e., the process λ(t) is reversible. Other 
transition probabilities are obtained quite similarly: 

 

p(λ(m$1)
 = λ2/λ(m)

 = λ1) = π2 $ π2 exp {$ (α1 + α2) Δt}, 

 

p(λ(m$1)
 = λ1/λ(m)

 = λ2) = π1 $ π1 exp {$ (α1 + α2) Δt}, 

 

p(λ(m$1)
 = λ2/λ(m)

 = λ2) = π2 + π1 exp {$ (α1 + α2) Δt}. 

 (41) 

 

Taking into account what we have just said above, 
one can write Eq. (38) in the form 

 

W(λ(m+1)/rm+1) = 
W(rm)

W(rm+1)
 × 

× ∑
λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

 W(λ(m)/rm) p(λ(m$1)/λ(m)) × 

× p(λ(m+1)/λ(m)) p(rm+1/λ(m$1),λ(m),λ(m+1)). (42) 

 

Now it only remains to determine the unknown 
factor W(rm)/W(rm+1) which can be obtained from 
the normalization condition 

 

∑
λ
(m+1)

=λ1

λ2

 W(λ(m+1)/rm+1) = 
W(rm)

W(rm+1)
 × 

× ∑
λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

    ∑
λ
(m+1)

=λ1

λ2

 W(λ(m)/rm) × 

× p(λ(m$1)/λ(m)) p(λ(m+1)/λ(m)) × 

× p(rm+1/λ(m$1),λ(m),λ(m+1)) = 1. 

 

Thus, 
 

W(rm)

W(rm+1)
 =
⎩
⎨
⎧ 

 
∑

λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

    ∑
λ
(m+1)

=λ1

λ2

 W(λ(m)/rm) × 

 

× p(λ(m$1)/λ(m)) p(λ(m+1)/λ(m)) × 
 

× p(rm+1/λ(m$1), λ(m), λ(m+1))
⎭
⎬
⎫ 

 

$1

. (43) 

 

Substituting Eq. (43) into Eq. (42), we finally 
obtain the recursion formula for the a posteriori 
probability W(λ(m+1)/rm+1): 

 

W(λ(m+1)/rm+1) =
⎩
⎨
⎧ 

 
∑

λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

 W(λ(m)/rm+1) × 

 

× p(λ(m$1)/λ(m)) p(λ(m+1)/λ(m)) × 

 

× p(rm+1/λ(m$1), λ(m), λ(m+1))
⎭
⎬
⎫ 

 
 × 
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×
⎩
⎨
⎧ 

 
∑

λ
(m$1)

=λ1

λ2

    ∑
λ
(m)

=λ1

λ2

    ∑
λ
(m+1)

=λ1

λ2

 W(λ(m)/rm) × 

 

× p(λ(m$1)/λ(m)) p(λ(m+1)/λ(m)) × 

 

× p(rm+1/λ(m$1), λ(m), λ(m+1))
⎭
⎬
⎫ 

 

$1

. (44) 

 

The formula (44) enables one to calculate the a 

posteriori probability at any time mΔt, m = 0, 1, ... . 
Here, for m = 0, W(λ(0)

 = λ1/r0) = π1, 
W(λ(0)

 = λ2/r0) = π2, λ($1) = λ1 or λ($1) = λ2. 
In conclusion, we should like to note that the  

approach usually used in problems of optimal non-
linear filtration2,3 assumes a limiting transition, in 
Eq. (44), at Δt → 0. The transition leads to a 
differential equation for the a posteriori probability. 
However, in our case when the measurement errors are 
taken into account, such a transition to limit is 
incorrect because the probabilities (33) can be negative 
 

as Δt → 0. Making the limiting transition in Eq. (44) 
is only possible  if σ → 0 simultaneously with Δt. This 
means that the case when the occurrence time of an 
event  is measured without errors is the limiting case. It 
was considered in Ref. 3. 

 
5. RESULTS OF NUMERICAL CALCULATIONS 

 
To obtain numerical results, we have developed an 

algorithm for calculating the a posteriori probability by 
Eq. (44). The calculation program is written in Pascal 
algorithmic language. The first stage of calculations 
includes imitation simulation of the MC-flux of events 
and simulation of the mechanism of errors origin in 
measurements of occurrence time  of an event. We omit 
the description of the imitation simulation algorithm 
because it does not contain any  difficulties. The second 
stage is a straightforward calculation of the a posteriori 
probability by formula (44). 

All the calculations are being performed for the 
following values of the parameters: λ1 = 10, λ2 = 1, 
α1 = 0.5, α2 = 0.7, σ = 0.05. Figures 2 to 4 present 
values of the a posteriori probability W(λ1/t) for 
Δt = 0.0359 (see Fig. 2); 0.09295 (Fig. 3); 0.15 (Fig. 4). 
 
 
 

 
 

FIG. 2. 
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FIG. 3. 

 
 

FIG. 4. 
 

The figures demonstrate the intervals for which the 
process λ(t) is stationary. To determine a tolerable 
value of Δt for given parameters, a statistical 
experiment has been performed. For each Δt, 50 
realizations of the MC-flux with measurement errors at 
the moments of the events’ occurrence were imitated. 
Duration of each realization was t = 50 units. At time 
t, the probability W(λ1/t) has been calculated, and 
the decision about one or other state of the process λ(t) 

is made using the criterion of maximum of the a 

posteriori probability. Then, the solution obtained was 
compared with the true state the process λ(t) had at 
time t known from the results of imitation simulation, 
and frequency of wrong decisions has also been 
calculated: 

 

P1 = P̂(λ(t) = λ1/λ(t) = λ2) = n1/N2, 

P2 = P̂(λ(t) = λ2/λ(t) = λ1) = n2/N1, 
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where Ni is the number of realizations, for which the 
true state of the process λ(t) at time t is λi, 
i = 1, 2, N = N1 + N2; n1 is the number of wrong 
decisions about the second state of the process λ(t) (at 
time t, the state of the process is λ(t) = λ2 but the 
wrong decision λ(t) = λ1 is made); n2 is the number of 
wrong decisions about the first state of the process λ(t) 
(at time t, the state of the process is λ(t) = λ1 but the 
wrong decision λ(t) = λ2 is made). The estimate of the 
total probability of an error was calculated by the 
formula p  = π1p 2 + π2p 1. The results of the statistical 
experiment are presented in the Table I. 
 

TABLE I. 
 

Pi Δt = 0.0359 Δt = 0.09295 Δt = 0.15 

P1 0.077 0.077 0.038 
P2 0.250 0.292 0.333 
P 0.178 0.202 0.210 

 

Analysis of the results demonstrates that, for the 
parameters given, the total probability of an error is  
 

smaller the closer the value Δt is to the left boundary 

2(λ1 + λ2)σ/λ1 2π = 0.035905. However, to obtain a 
tolerable value of Δt, when varying the initial 
parameters, it is necessary to perform the whole  
statistical experiment again. 
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