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We propose a numerical model for admixture transport in rivers based on 

solutions of equations of the shallow water theory and semi-empirical equation of 

turbulent diffusion.  The results of numerical experiments obtained for a concrete 

area of Angara river are presented. 
 

In monographs 1 to 3 one may found a review of 
the mathematical modeling methods for simulating 
pollution of the hydrosphere. 

When studying pollution of the water basins, one 
may use a semi-empirical equation of the turbulent 
diffusion.  It is important to note  that the network of 
hydrologic observations available now does not provide 
data sufficient for making accurate determination of the 
velocity field and turbulent diffusion coefficients. 

In this paper hydrologic characteristics are 
obtained by solving equations of shallow water theory4 
using a parametrization of the influence of bottom 
friction and taking into account horizontal turbulent  
exchange 

 

∂u
∂t + u 

∂u
∂x + v 

∂u
∂y = $ g 

∂(h + δ)
∂x  + 

+ lv + 
∂
∂x kx 

∂u
∂x + 

∂
∂y ky 

∂u
∂y $ 

ru ⎜v⎪
h

 , 

∂v
∂t + u 

∂v
∂x + v 

∂v
∂y = $ g 

∂(h + δ)
∂y  $ 

$ lu + 
∂
∂x kx 

∂v
∂x + 

∂
∂y ky 

∂v
∂y $ 

rv ⎜v⎪
h

 , (1) 

∂h
∂t + 

∂uh

∂x  + 
∂vh

∂y  = 0,   ⎜v⎪= u
2 + v2, 

 
where t is time, u and v are the components of the 
velocity vector of water motion along the Cartesian 
axes x and y, g is the acceleration of gravity; h is the 
basin depth; l = 2ω sinϕ is the Coriolis parameter, ω is 
the angular velocity of the Earth's rotation, ϕ is the 
latitude; kx and ky are the coefficients of turbulent 
exchange along the coordinate axes x and y, 
respectively; δ(x, y) is the function describing the 
bottom relief; r is the coefficient of bottom friction. 

The system of partial differential equations (1) is 
solved under the following initial conditions: 

 

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y),  

h(x, y, 0) = h0(x, y). 
 

The contour of the integration domain consists of a 
solid part and open boundaries.  The condition of 
sticking is set on the solid part of the contour.  The 
values of unknown functions or their derivatives 
(depending on the direction of the flow velocity) are 
set on the open boundaries. 

According to the  solution method proposed, using 
the equation of discontinuity, let us transform the 
system of equations (1) to the following form: 
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Here, the following designations are introduced: H = h, 
U = Hu, V = Hv. 

The system of equations (2) is integrated 
numerically in the Cartesian coordinate system by the 
method of virtual domains5 that enables one to take 
into account an arbitrary relief of a basin's bottom. 

To make equations (2) discrete in time, the 
Krank$Nikolson scheme and two-cycle component 
splitting method5 were used. 

Let us construct a grid with the nodal points at 

xi = iΔx, yj = jΔy, i = 1, I , j = 1, J . 

We also use auxiliary points xi+1/2, yj+1/2 
positioned in the middle points of the basic intervals. 

For brevity of the further treatment, let us 
designate 

 

ψi,j = ψ(xi, yj, tn),  tn = n Δt  (n = 0, 1, ...); 
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where ψ is one of the functions of the problem 
considered; Δt is the step in time. 

Then, we introduce the matrix operators 
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As a result, the finite-difference analogs of the 
system of equations (2) can be written in the form 
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where N = 

U

V

h

, E is the unit matrix. 

The finite-difference scheme used for component 
splitting has the second-order approximation with 
respect to Δx and Δy, and the first-order one with 
respect to Δt.  It conserves mass and full energy of the 

system.6  The system of equations (3) can be solved by 
the method of matrix factorization.7 

To simulate admixture transport in a basin, let us 
consider the equation of transport and diffusion of a 
passive admixture for the case of shallow waters4 
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where F(x, y, t) is the function describing distribution 
and power of substance sources considered. 

Since no detailed observational data are available, 
we assume C to be the background distribution.  The 
conditions of the second kind are set at the boundaries.  
We assume that admixture flows through solid basin's 
boundaries are absent. 

Using the equation of discontinuity, let us 
transform the Eq. (3) to the following form 
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where S = CH, f = FH. 
Then, the finite-difference analogs of Eq. (4) can 

be written in the form 
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To solve the finite-difference equations numerically 
we use nonmonotonic sweep.8 

Let us now describe the results of numerical 
simulations of the water pollution dynamics for the 
case of eventual leakage from a pipeline projected 
across the Angara river at a distance of 34 to 37 km 
down river from Irkutsk. In this region, the river 
turns to the left, and its bed is divided by Ashun 
island. The river depth was taken from the 
bathymetric map of the scale 1:5000 with the step of 
25 m. 

Figure 1 presents the flow velocity field calculated 
using the hydrodynamic model proposed. 

Calculations of the river pollution were 
performed for different types of the gas pipeline 
damages.  The power of the source was assumed to be 
0.1 l/s.  The break points are chosen in the section 
where the gas pipeline is planned for construction.  
The first point is near the right bank of the river, the 
second one in the middle, and the third one near its 
left bank.  The calculations were performed for liquid 
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hydrocarbons (fraction close to gasoline) that may 
present in gas.  The maximum permissible 
concentration of a condensed gas in water must not 
exceed 0.05 mg/l. 

The first series of calculations characterizes 
water pollution in 90 s during which time the 
emergency stopcocks should be closed.  Since the 
velocity of water flow is low, near the right bank, 
the main pollution spot will be near this bank if the 
leakage is near the right bank also.  The highest 
concentration of the substance is 10 mg/l.  In the 
case of gas pipeline leakage near the left bank or in 
the middle of the river, the pollution spot is extended 
along the stream.  The highest substance 
concentration is 4$5 mg/l because the flow velocities 
near the break points are higher as compared with 
that in the first case. 

 

 
FIG. 1.  Surface flows in the area considered . 
 

The next series of calculations has been performed 
for the same break points but for the case when a 
stationary  point source acts during 30 min (Figs. 2 to 
4).  The isolines show the pollution distribution in a 
step of ten maximum permissible concentration levels; 
the first curve outlines pollution at the level of 1 
maximum permissible concentration.  In the middle of 
the river and near its left bank, the admixture  
propagates faster as compared with that near the right 
bank.   

 

 
FIG. 2.  Water pollution field for the case of gas 

pipeline break near the right bank. 

 
 

FIG. 3.  Water pollution field for the case of gas 

pipeline break in the middle of the river. 
 

 
 

FIG. 4.  Water pollution field for the case of gas 

pipeline break near the left bank. 
 
This is connected with the flow dynamics as the 

flow velocity is higher in this part of the river.  So the 
admixture can quickly spread down river and threaten 
the water intake of Angarsk city. 
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