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Lidar equation has been derived for the case when the anisotropy of a 

scattering medium is assumed to be weak to introduce any essential distortions into 

the wave front of a sounding radiation. It is shown in the paper that this equation 

may successfully be used when interpreting data of lidar sensing of crystal clouds 

in the atmosphere. 
 

The crystal clouds that are quite frequently 
observed in the atmosphere are, from the standpoint of 
atmospheric optics, an optically anisotropic medium. 
That means that the extinction of light propagated 
through such a medium, as well as the polarization of 
direct and scattered radiation, should depend on the 
direction of propagation and on the polarization state of 
incident radiation.  

The lidar equation that is most commonly used to 
describe lidar returns does not allow for this 
circumstance since it is written for the intensity of light 
thus being actually a solution, in the single scattering 
approximation, of a scalar-form radiation transfer 
equation for the backscatter. In so doing it is assumed 
that the scattering properties of the medium may be 
described by such scalar values as extinction and 
scattering coefficients and the scattering phase 
function. The other one approach enables one to relate 
the Stokes parameters of the backward scattered 
radiation to those of a sounding beam. To do this one 
should replace the backscattering coefficient entering 
the scalar lidar equation by a backscattering phase 
matrix. At the same time it is still assumed that the 
extinction of radiation along the path to the scattering 
volume and back may be described using scalar 
representation for the extinction coefficient of the 
medium. As a result this approach ignores possible 
dependence of the extinction on the direction of a 
sounding beam propagation, with respect to the axes 
characteristic of an optically anisotropic medium. 
Moreover, this approach does not allow for possible 
variations in the state of polarization of the direct and 
scattered radiation when propagated through the 
portion of a sounding path within an anisotropic 
medium.  

This approach seems, a priori, to be quite 
sufficient for the case of sounding crystal clouds sense, 
because of their low optical thickness, one may assume 
that the anisotropy of their scattering properties should 
only weakly affect the polarization of the direct (non-
scattered) radiation and its attenuation.  

However, from our estimates1 it follows that 
significant corrections for the extinction anisotropy may 

be needed to the extinction along the sounding path, if 
described using this approach.  

In any case it seems to be relevant if some 
expressions for estimating the applicability limits of 
this approach are obtained to introduce corrections 
when necessary. Regardless of the case of sounding 
crystal clouds the derivation of lidar equation discussed 
below may be helpful for understanding the problems 
that may arise when sounding other optically 
anisotropic media.  

Propagation of a polarized radiation through an 
anisotropic medium is described by a system of four 
coupled integro-differential equations for the Stokes 
parameters.2  In a compact vector-matrix form this 
system is as follows: 

 

⎝
⎛

⎠
⎞∂

c∂t
 + ω∇ + ε(r, ω)  S(t, r, ω) = 

 

= ⌡⌠
4π

 dω′ M(r, ω, ω′) S(t, r, ω′) + C(t, r, ω), (1) 

 

where S(t, r, ω) is the Stokes vector of radiation at a 
point set by the radius vector r; ω is the unit vector along 
the direction of light propagation that coincides with the 
direction of wave vector k. The operator in brackets 
involves the partial derivative with respect to time 
divided by the speed of light in the medium, the operator 
ω∇ that means taking a directional derivative along the 
direction ω, and the extinction matrix ε of the medium 
for the radiation that is being propagated along the 
direction ω. The integral in the right-hand side of the 
equation defines the radiation that is being propagated 
along the direction ω and which has originated at the 
point r due to re-distribution of radiation incident on a 
unit scattering volume around this point from various 
directions ω′. The elements of the scattering phase matrix 
M have dimensionality of [m$1sr$1]. The vector C defines 
the field from light sources. 

The lidar equation could be derived as a solution 
to system (1) that would explicitly relate the flux of  
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the Stokes vector incident onto the lidar receiving 
antenna to the parameters ε and M of the medium 
provided that the Stokes vector of sounding radiation is 
known. However, this system of equations can be 
solved only numerically. For this reason we make, in 
what follows, some assumptions that enable a 
simplification of the system. Certain explanations of 
the assumptions made are also given below, in the 
course of consideration. 

Let us first consider, as a heuristic item of the 
discussion, the radiation transfer equation in a scalar 
form that has the view similar to that of equation (1) 

 

⎝
⎛

⎠
⎞∂

c∂t
 + ω∇ + ε(r)  J(t, r, ω) = 

σ(r)
4π

 × 

× ⌡⌠
4π

 dω′ γ(r, ω, ω′) J(t, r, ω′) + q(t, r, ω), (2) 

 

where J(t, r, ω) is the intensity of radiation; ε is the 
extinction coefficient; σ is the scattering coefficient; γ 
is the scattering phase function. 

This equation may also be written in the operator 
form3 
 

L J = B J + q. (3) 
 

The meaning of the differential, L, and integral, 
B, operators may be understood from the comparison of 
this equation with the equation (2).  

Solution of the equation (3) may be presented in 
the form a series of the following view: 

 

J = ∑
n=0

∞

 (L$1 B)n L$1 q = ∑
n=0

∞

 Jn, (4) 

 

where n means the order of scattering. 
As a consequence, for the direct, non-scattered 

radiation we have the following expression: 
 

J0 = L$1 q , (5) 
 

while for the first-order scattering the expression is as 
follows: 
 

J1 = L$1 B L$1 q. (6) 
 

The inverse operator L$1 is related to the L operator as 

L L
$1 = I, where I is the identity operator that, in turn, 

is an integral operator with the Green’s function of the 
operator L as the kernel. The Green’s function, in this 
case,  has the following view: 
 

G(t, t′, r, r′) = h(t $ t′) e
$εc(t$t′)

 × 

× δ [(r $ r′) $ c(t $ t′) ω], (7) 

 

where h(t) is the unit step function and δ(ξ) is the 
delta function. 

Solution of the equation (5) is as follows: 
 

J0 = c ⌡⌠
$∞

∞

 dt′ ⌡⌠ ⌡⌠
$∞

∞

 ⌡⌠ dr′ G(t, t′, r, r′) q(t′, r′, ω). (8) 

Let us assume that ε = const while the source 
function being set as follows: 
 

q(t′, r′, ω) = P0(Δω0)
$1

 δ(t) δ(r) [h(θ $ Δθ/2) $ 

$ h(θ + Δθ/2)] [h(ϕ) $ h(ϕ + π)], (9) 

 

where θ and ϕ are the polar and azimuth angles of the 
direction ω. 

Formula (9) describes the action of an instant 
point source of radiation uniformly emitting into the 

conical solid angle Δω0 = π(Δθ)2/4 the radiation of P0 
power. 

Under the assumptions made the expression (8) 
yields an obvious result that intensity of the 
backscattered radiation 
 

J0(r) = P0(Δω0)
$1 r$2 exp {$ εr} (10) 

 

falls off inversely proportional to the squared range  
and that the extinction of radiation obeys the Bouguer 
law. 

When considering the case of an anisotropic 
medium we shall accept the following suppositions. Let 
us omit the integral term in equation (1), thus 
considering only direct, non-scattered radiation. 

The vector q(t, r, ω) is set similarly to expression 
(9) assuming that at t = 0 and at the point r = 0 we 
have 
 

C0 = P0(Δω0)
$1 s0, (11) 

 

where s0 is the normalized Stokes vector of radiation 
coming from the source. 

Assume also that there exists an  operator L
$1 

inverse to the operator L, from the left-hand side of 
equation (1), such that when applied to vector (11) it 
yields a solution that has same structure as solution 
(10) 

 

S0(r) = L$1 C = r$2 Y P0(Δω0)
$1 s0, (12) 

where Y is the unknown, for the present, operator that 
characterizes the transformation of the Stokes 
parameters of the radiation coming from the source. 
Actually, this formula results from the assumption of 
weak anisotropy of the medium. It simply means that 
the train of radiation from the source is being washed 
out due to purely geometric causes. No possible 
distortions of the wave front due to, for instance, the 
birefringence is considered. As will be clear from the 
discussion below the condition of weak anisotropy 
reduces to a requirement that the off-diagonal elements 
of the extinction matrix be small, as compared to the 
diagonal ones 
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εii >> εij. 

Then we demand that radiation propagates along 
the z axis within a small solid angle Δω0 so that one 
may consider that  

 

 

ε(r, ω) = ε(z, ez), (13) 
 

where ez is the unit vector. 
When seeking the view of the operator Y note 

that without the integral term in equation (1) and after 
the termination of the source action, i.e., when 
q(t, r, ω) = 0, the equation (1) takes the form a 
system of homogeneous linear equations. By making use 
of the condition (13) we may write the system for a 
one-dimension case having in mind that by making a 
substitution z = ct one may exclude the explicit 
dependence on time 
 

d
dz

 S(z) = $ ε(z, ez) S(z). (14) 

 

Solution to this system is unambiguously 
determined by the boundary condition (11). 

As known from the theory of systems of linear 
differential equations a solution to system (14) can be 
written in the following form4: 
 

S(z) = Y(z, z0, ez) S(z0), (15) 
 

where Y(z, z0, ez) is the fundamental matrix of the 
system that satisfies the boundary condition  

Y(z, z0, ez) = I, (16) 

where I is the unit matrix. 
The matrix Y(z, z0, ez) may be expressed through 

the matrix ($ε) with the following iteration series: 
 

Y(z, z0) = I $ ⌡⌠
z0

z

 ε(z1) dz1 + ⌡⌠
z0

z

 ε(z1) dz1 ⌡⌠
z0

z1

 ε(z2) dz2 $ 

$ ⌡⌠
z0

z

 ε(z1) dz1 ⌡⌠
z0

z1

 ε(z2) dz2 ⌡⌠
z0

z2

 ε(z3) dz3 +... . (17) 

 

For the sake of simplification we omitted ez in the 
arguments of the matrices. 

If ε is independent of z the series (17) coincides 
with the definition of the exponential function with a 
matrix as an argument 

 

exp ($ A) = ∑
n=0

∞

 ($ A)n/n! . (18) 

 

So, from Eq. (17) it follows that at ε(z, ez) = const 
 

Y(z, z0, ez) = �. !  {$ (z $ z0) ε}. (19) 
 

From the known property of the fundamental 
matrix   
 

Y(z,z0) = Y(z,zn$1) Y(zn$1,zn$2) ... Y(z1,z0) (20) 

 

it follows that at ε = ε(z, ez) 
 

Y(z, z0, ez) = �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$ ⌡⌠
z0

z

 ε(z′, ez) dz′  . (21) 

 

Substituting the operator (21) into the expression 
(15) and having in mind the boundary condition (11) 
one finds from a comparison with the expression (12) 

that the operator L$1 has, under the assumptions made, 
the following view: 
 

L
$1 = r$2 �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$ ⌡⌠
z0

z

 ε(z′, ez) dz′  . (22) 

 

According to expression (12) one obtains for the 
forward propagated radiation that  

 

S0(z, ez) = P0[Δω0 r 

2]$1 �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$ ⌡⌠
z0

z

 ε(z′, ez) dz′  s0. 

 (23) 

 

Then, following the formal expression (6), one 
should apply the scattering operator to the Stokes 
vector S0(z) in order to calculate the Stokes vector of 
scattered radiation and after that to apply again the 
operator (22) to S0(z), while, however, changing the 
direction for $ ez.  

To seek the scattering operator, it is worth making 
use of a known method of assuming that at every 
moment t in time, or at the distance z = ct, there 
appears a source of light whose Stokes vector is  

 

S0(z, $ ez) = M
π
(z) ΔV S0(z, ez), (24) 

where M
π
(z) = M

π
(z, ez, $ ez) is the backscattering 

phase matrix and  
 

ΔV = r 

2 Δω0 cΔt/2 (25) 

is the portion of scattering volume that contributes to 
the backscattered flux at the moment t. At the moment 
2t this flux reaches the lidar receiving antenna. The 
quantity Δt is the duration of a rectangular pulse that 
is equivalent in the radiation energy to a realistic laser 
pulse. 

Transformation of scattered radiation, on its way 
from the illuminated scattering volume toward the lidar 
receiver, is defined by the operator  
 

L
$1($ ez) = r$2 Y(z, z0, $ ez). (26) 

 

Having in mind that r = z and z0 = 0, let use unite 
the equations (22)$(25) following the scheme (6) then 
multiply this result by the area of the lidar receiving 
antenna and obtain the equation sought 
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P(z) s(z) = 

1
2

 c W0 Az
$2

 Y(z, $ ez) Mπ
(z) Y(z, ez) s0,(27) 

 

where s(z) and s0 are the dimensionless normalized 
Stokes vectors of the scattered and sounding radiation, 
respectively; c is the speed of light; W0 = P0Δt is the 
energy of sounding pulse; A is the area of the lidar 
receiving antenna; z is distance to the scattering 
volume. The elements of the backscattering phase 
matrix have the dimensionality of [m$1sr$1]. 

This equation relates, in the single scattering 
approximation, the flux of the Stokes vector of 
radiation emitted by a transmitter to that of scattered 
radiation collected by the receiving antenna of a lidar. 

Let us now consider properties of Y operators that 
have the view (21). When writing the equation (27) 
we have assumed that the anisotropic medium is 
immediately adjacent to the lidar that is z0 = 0. If, 
however, there is a portion of the sounding path, 
[0, z0], where the extinction may be described by a 
scalar extinction coefficient α(z), then one can write, 
based on the properties of the fundamental matrix that 
 

Y(z,ez) = Y(z, z0, ez) Y(z, 0, ez) (28) 

and 

Y(z,$ez) = �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$⌡⌠
z0

z

 ε(z′) dz′  �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$⌡⌠
0

z0

 α(z′) dz′  .  (29) 

 

Having in mind the expression (20) one can divide 
the interval [z, z0] into n subintervals Δzi  such that 
within each subinterval one may assume that ε = const 
and εij Δz << 1. In that case the operator Y(z, z0, ez) 
may be presented as the product 
 

Y(z, z0, ez) = (I $ Δzn εn) ... (I $ Δzi εi) ... (I $ Δz1 ε1), (30) 

 

where I denotes the unit matrix. The matrix ε1 refers to 
the subinterval Δz1 = (z1 $ z0), and so on. 

Since in the general case we have that  
 

εi εj $ εj εi ≠ 0, 

 

we see that the co-factors in expression (30) are 
noncommutative. 

Since the direct and backward scattered radiation 
travel along the same path the scattering particles are 
in the reciprocal positions relative to them. According 
to the reciprocity theorem the amplitude scattering 
matrix should be transposed and the signs at its off-
diagonal elements inverted.5   

As to the extinction matrix in this case the 
situation is as follows. If the extinction matrix for the 
direct radiation is written in the form of a block matrix  

 

ε(z, �z) = ⎝
⎛

⎠
⎞A B

C D
 , 

then the corresponding matrix for the backward going 
radiation is  

ε*(z) = ε(z, $�z) = ⎝
⎛

⎠
⎞A $ B

$ C D
 . (31) 

 

Taking into account the expression (31) and 
assuming that the interval is subdivided as in formula 
(30) the operator Y(z, z0, $ez) may be written as 
follows: 
 

Y(z, z0, $ez) = (I $ Δz1 ε*1)...(I $ Δzi ε*i)...(I $ Δzn ε*n) 

, (32) 
 

that is the sequence of the co-factors inverts. 
In the general case solving equation (27) faces 

many difficulties. The matter is that as in the case with 
the scalar lidar equation it needs for supplementing of a 
definition by some matrix relationship like  
 

ε = Γ M
π
, 

 

that would set an a priori ratio between the extinction 
matrix and the backscattering phase matrix of the 
medium under study. Having supplemented the 
definition and substituting the operators Y(z, z0, $ez) 
and Y(z0, z, $ez), in their corresponding forms (30) 
and (32), into the equation (27) one may iteratively 
solve it. 

Fortunately, in the case of sensing crystal clouds 
the situation seems to be much simpler. We have 
performed certain preliminary theoretical study of the 
extinction matrices of some simple models of ensembles 
of ice crystal particles.1  In so doing we have calculated 
extinction matrices for the ensembles of cylinder 
particles having different modal radii and types of 
orientation. The calculations made show that normally 
the magnitudes of the off-diagonal elements of the 
extinction matrix, in these cases, do not exceed one per 
cent of the diagonal ones. It is also important to note 
that the ratio is larger for small particles whose size 
compares to the wavelength of incident radiation, while 
decreasing at increasing size of the scattering particle. 
This is obviously indicative of the fact that in the case 
of large particles the main contribution to the 
extinction of radiation comes from diffraction on the 
particle edges, while the interference of the non-
scattered wave with the wave passed through the 
particle makes an essentially low contribution. It seems 
reasonable to consider that the extinction due to the 
diffraction will hardly become relatively lower when 
taking into account hexagonal shapes of the particles 
and the birefringence effect. For this reason it seems to 
be very close to reality the following representation: 
 

ε(z, �z) = α(z, �z) I. (33) 
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If this condition holds, the operators  
Y(z, z0, $ez) and M

π
 become commutative and more 

over  
 

Y(z, z0, $ez) = Y(z, z0, ez). 

Then, finally the equation (27) takes the form  
 

P(z) s(z) = 
1
2
 c W0 Az

$2 M
π
(z) s0 × 

× �. !  

⎩
⎨
⎧

⎭
⎬
⎫

$2⌡⌠
0

z0

 α(z′, θ, ϕ) dz′  . (34) 

 

In the relation to describing the radiation 
extinction along the sounding path this equation differs 
from the equation in the scalar form only by the fact 
that the extinction coefficient entering it may appear to 
be dependent on the polar, θ, and azimuth, ϕ, angles 
that determine the direction of the sounding path with 
respect to the axes that characterize the medium 
anisotropy. 

Based on the considerations presented above it 
seems that merely substituting a one-dimension matrix 
instead of the backscattering coefficient is quite an 
effective way of passing to a vector form of the lidar 
equation, at least in the case of sensing crystal clouds. 
Moreover, if the direction of sounding is fixed no 
difference  in the way the extinction of radiation by the 
medium along the path is being taken into account 
occurs, as compared to the scalar form of the equation. 
Certain peculiarities may appear when comparing the  
 

sounding results obtained along the paths  oriented at 
different azimuth and zenith angles. But, if the 
diffraction component dominates in the total extinction 
then the dependence of extinction on the direction of 
sounding may easily be interpreted. This circumstance 
opens some new possibilities of studying the 
microphysical properties of the ensembles of crystal 
particles and their orientation as well. 
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