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We present a study of an adaptive imaging system efficiency when viewing 

an extended object through a layer of a turbulent medium.  We have estimated a 

change in the size of the region where the influence of weak inhomogeneities can be 

compensated for when placing a corrector into the region of the layer image center. 

It is shown that the relative improvement in the system performance due to the 

displacement of the corrector depends on the layer thickness and its position.  A 

modified version of the correction algorithm is proposed that enables extending the 

region of the system isoplanatism.  Analysis has been made using series expansion 

of the wave front over Zernike polynomials. 
 

1. INTRODUCTION 

 

Anisoplanatism of an adaptive imaging system is 
one of the factors that restrict making corrections to 
the images of extended objects viewed through a 
turbulent medium.  This happens because the distorting 
medium is a three-dimensional one. The effect manifests  
itself in the fact that one can correct only small portion 
of an object image, using one plane corrector, within 
the so called isoplanatism zone. The size of the 
isoplanatism region of a system depends on the 
distribution of optical inhomogeneities of the medium 
along the viewing path and on the corrector position.  
By positioning the corrector so that its plane coincides 
with the image plane where most intense fluctuations of 
the  refractive index concentrate one can achieve 
extending of the isoplanatism region and improvement 
of the image quality.  

Normally, analysis is made of the optical systems 
in which the corrector used is combined with the 
receiving aperture.  In this case the size of a near-axis 
region of good quality image is affected by the general, 
integrated characteristic of turbulence  and an 
improvement in the image quality can only be achieved 
by eliminating the large-scale aberrations of the wave 
front (see Ref. 1).  If an adaptive imaging system  
allows the corrector to be moved, it is possible to 
improve the image by placing the corrector in an 
optimum position. 

If, however, the turbulence is uniformly 
distributed along the viewing path no essential 
improvement of the image quality can be achieved by 
moving the corrector.  Nevertheless, even in this case, 
one may try to improve the quality of imaging the 
peripheral points of the object while incompletely 
correcting the central part of the image.  The  method 
of tuning the corrector so that the latter can provide  
 

improving the image quality when the atmospheric 
inhomogeneities are  uniformly distributed along the 
viewing path has been considered earlier.2 

It is known from the experimental studies that 
vertical distribution of the atmospheric turbulence is 
nonuniform.  Thus, according to Ref. 3 the optical 
inhomogeneities of the Earth's atmosphere normally 
localize in a few layers.  In that case an adaptive 
imaging system equipped with several correctors could 
provide for a significant improvement in the quality of 
viewing.  To achieve this goal, one have to place the 
correctors in the planes conjugate to those layers, each 
corrector being tuned in accordance with the character 
of optical inhomogeneities in the corresponding layer.4  
However, even that complicated system does not  
provide for a complete correction. The matter is that 
the atmospheric layers have a finite thickness, on the  
order of 100$200 m. For this reason the anisoplanatism 
effect, caused by three-dimensionality of a distorting 
medium, manifests itself.  The magnitude of the  
residual error will depend on the layer thickness and a 
distance to it. 

The model that is being considered in this paper 
involves a single distorting layer and a single corrector.  
The question we address here is the effectiveness of 
bringing the corrector into the plane conjugate with the  
central plane of the layer.  We also estimate the size of 
the isoplanatism region as a function of the layer 
thickness an a distance to it.  

In the first part of the paper we use the classical 
correction technique that uses the distortions of a 
wave coming from a reference source placed at the  
center of an object under study.5  In the second part 
of the paper we are identifying the situations when a 
modification of the method that assumes recording of 
aberrations averaged over the entire region viewed 
may be useful. 
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2. FORMULATION OF THE PROBLEM. 

RESIDUAL ERROR 

 

The geometry of the problem is shown in Fig. 1.  
Between the object O viewed and the aperture L of an 
imaging system there is a distorting layer S of an 
inhomogeneous medium.  The 2d-thick layer is located 
on the optical path with the layer center being at the 
point zs. The  axis z looks from the plane O (z = 0) 
toward the receiving aperture plane L (z = H). The 
system is equipped with a wave-front corrector whose 
coordinate zC may be varied.  In an actual adaptive 
system the wave-front corrector is normally being 
located behind a photodetector aperture in the plane 
zC.  Ignoring the difficulties, that may arise due to the 
necessity to make transformations of the corrector 
coordinate zC′ (zC) and radius RC′ (RC) of its aperture we 
consider here the system in which a corrector of a fixed 
radius is placed in front of the receiving aperture of the 
system.  We assume that the diffraction limitations are 
primarily due to the corrector size. 

 

 
 

FIG. 1.  Optical arrangement of an extended object 
imaging through the distorting layer of a turbulent 
medium. Here the object is designated as (O), wave-
front corrector (C), layer (S), and the receiving 
aperture (L). 

 

Let the optical inhomogeneities of the distorting 
layer of the turbulent atmosphere obey the Kolmogorov 
statistics and have the spatial spectrum 

 

Φn(k) = Cn
2 k$11/3. (1) 

 

Let us choose the structure constant such that 
turbulent layers of different thickness and coordinate 
have the same integral characteristic (Fried radius r0) 
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where k0 is the wave number, zS and 2d are the 
coordinate and thickness of the layer, H is the length of 
the optical path. 

Let ϕ(rC, ρ) be the phase distortions of wave 
coming from the point ρ on the object O, caused by the 
influence of the layer S and measured in the aperture 
plane L.  Since our analysis is based on the geometrical 
optics principle, it can be said that ϕ(rC, ρ) is the 
random phase shift introduced by the layer into the ray 
coming from the point ρ on the object, through the 
point rC in the corrector plane, and measured in the 
aperture plane, that is, at the point r (see Fig. 1).  Let 
u(rC) be the correcting phase shift introduced by the 
corrector C.  The residual rms distortions averaged over 
the corrector aperture we shall call the residual error 

 

<J2>(ρ) = 

1
SC

 ⌡⌠
SC

 <(ϕ(rC, ρ) $ u(rC))2 > d2rC, (3) 

 

where SC is the corrector’s area. 
The magnitude of the residual error (Eq. (3)) 

depends on the layer thickness and the corrector 
position with respect to the layer.  The distribution of 
the error over the object is determined by the 
correction method used, that is by the way of choosing 
the function u(rC).  Having chosen the correction 
method one may find an optimal position of the 
corrector given layer parameters correspond to the 
residual error minimum (Eq. (3)). 

 
3.  CORRECTION USING A POINT SOURCE  

 

Let us consider the correction method according to 
which the corrector is adjusted for work with the 
distortions of a wave coming from a point source 
located at the object center.  In that case the central 
point of the object is viewed without any distortions 

 

u(rC) = ϕ(rC, ρ).  (4) 
 

The residual error is equal to zero at the object 
center and gradually increases as the distance from the 
center increases 

 

<J2>(ρ) = 
1
SC

 ⌡⌠
SC

 <(ϕ(rC, ρ) $ ϕ(rC, 0))2> d2rC .  (5) 

 

Let the corrector of the imaging system considered 
be an ideal modal corrector that enables correction for 
the basic optical aberrations.  That means that the 
phase distortions are represented as a series over 
Zernike polynomials Zi(rC) (Ref. 6) 

 

ϕ(rC, ρ) = ∑
i

 ai(ρ) Zi(rC).  (6) 

In this representation the rms error, (Eq. (3)), is a 
sum of errors due to individual aberrations 

<J2>(ρ) = ∑
i

 <Ji
2>(ρ).  (7) 
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As is shown below behaviors of different terms in 
Eq. (7), as functions of ρ, are different.  To show the 
gain that can be achieved due to the corrector 
displacement, consider each term of the sum separately.  
The rms error, due to the ith aberration, may be 
represented as follows (Ref. 6): 

 

<Ji
2>(ρ) = 

1

SC
2 ⌡⌠

SC

 ⌡⌠
SC

 <{ϕ(rC, ρ) $ ϕ(rC, 0)} × 

× {ϕ(r ′C, ρ) $ ϕ(r ′C, 0)}> Zi(rC) Zi(rC)d2rC d2r ′C. (8) 
 

Equation (8) involves the correlation function  
<ϕ(rC, ρ) ϕ(r ′C, ρ′)>. Technically, it is the correlation 
function in the receiving aperture plane L between the 
phase shifts along the rays  from points ρ and ρ′ on the 
object coming through the points rC and r ′C  in the 
corrector plane, respectively (see Fig. 1). Let us 
express the correlation function in terms of the 
spectrum of optical inhomogeneities of the turbulent 
layer (Eq. (1)) 

 

<ϕ(rC, ρ) ϕ(r ′C, ρ′)> = 2π k0
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where 
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For the inhomogeneities with Kolmogorov 
spectrum and at r(z) = 0 the integral (9) diverges.  
However, this does not affect the outcome, since the 
phase dispersion does not enter into the final 
expression.  By applying the Fourier transform to the 
Zernike polynomials we obtain, for the residual error, 
that 
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Here i = (n, m, l) is the number of a Zernike 
mode, ρ = (ρ, ϕ

ρ
) is the point on the object in polar 

coordinates, Jn(ξ) is the Bessel function of the nth 
order, DC = 2RC is the corrector diameter, zC is the 

corrector coordinate.  The function C
~

n
2(d, zS, z) 

provides for the fulfillment of the equality (2).  The 
latter one shows that normalizing of the structure 

constant is being done in such a way that the Fried 
radius r0 keeps the same for any position and thickness 
of the layer, that is  

C
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This normalization allows the results to be represented 
in the general form while the residual error to be 
expressed in units of [HDC/(zC r0)]5/3.  The quantity 
HDC/zC has the meaning of effective beam aperture in 
this corrector plane. By displacing the corrector 
towards an object one increases the effective aperture.  
Correspondingly, the phase dispersion and absolute 
value of the error increase. 

The dependence of the residual error on the corrector 
position, for several points on the object that differ by 
the distance ρ from the center while being on the same 
line (ϕρ = 0), is shown in Fig. 2. The curves have been 

plotted assuming the astigmatism aberrations (n = 2, 
m = 2, l = 1). The layer is at the path center, zS = 0.5H, 
and has the thickness 2d = 0.02H (see Fig. 2a) and 
2d = 0.1H (see Fig. 2b). Let us note that there is an 
optimum in the corrector position and it is near the layer 
center what gives minimum to the residual error. 
Therefore the minimum is sharper the thicker is this 
turbulent layer. 

 
a 

 
b 

FIG. 2.  Dependence of the residual error on the 
corrector position for different points on the object: 
ρ = 0.5Rc (1), ρ = 5Rc (2), ρ = 20Rc (3), ρ = 40Rc (4). 
The layer is in the middle of the path, zs = 0.5H and has 
the thickness 2d = 0.02H (a) and 2d = 0.1H (b). 
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The distribution of the error over the object image 
for a thin layer, 2d = 0.02H, is shown in Fig. 3.  For a 
comparison two positions of the corrector are 
considered, namely, the position at the center of the 
layer image (curves 1$3) and in the receiving aperture 
plane (curves 4$6).  The distortion level with no any 
correction applied is depicted in figures with the 
horizontal lines. This level equals to the value of the 

Noll index, <a0
2>, that is to the variance of the phase 

distortion expansion coefficients (see Ref. 6). The image 
quality improvement is achieved at the points where 
the residual error is below this level. This near-axis region 
is called the isoplanatism zone for the ith aberration.  
The residual error exceeds the Noll index value at the 
points outside this zone, i.e., additional aberrations are 
introduced into the distant points of an image when 
trying to correct its near-axis portion. One may assess 
how the isoplanatism zone increases when positioning 
the corrector at the center of a layer for different 
positions of the latter with respect to the object 
viewed. The isoplanatism zone becomes larger when 
moving the layer from the object and positioning the 
corrector at the image of this layer.  The size of the 
isoplanatism zone, in units of RC, (for the tilt and 
astigmatism aberrations) at different positions of the 
corrector regarding the image of a thin layer, 2d = 0.1, 
are given in Table I. 

 

 
FIG. 3.  Residual error as a function of the distance 
from a point on the object to its center. The corrector 
is positioned at the layer image center (1$3) and in 
the receiving aperture plane (4$6): zS = zC = 0.8H (1); 
zS = zC = 0.5H (2); zS = zC = 0.2H (3); zS = 0.8H, zC = H 
(4); zS = 0.5H, zC = H (5); zS = 0.2H, zC = H (6). 

 

 

TABLE I. Size of the isoplanatism zone (in RC  units). 
 

 Tilt 
(n = 1, m = 1, l = 1) 

Astigmatism  
(n = 2, m = 2, l = 1)

The layer Position of the corrector 

position 
along the 

path 

near the 
receiving 
aperture  

at the layer 
image 
center  

near the 
receiving 
aperture  

at the layer 
image 
center  

0.2H 2.1 95.1 0.16 5.8 
0.4H 5.4 187.9 0.42 11.3 
0.6H 12.2 281.3 0.95 16.9 
0.8H 33.0 374.6 2.55 22.5 

Let us now elucidate the gain that may be 
achieved owing to the displacement of the corrector 
into the layer image plane for aberrations of different 
types. To account for the mean contribution coming 
from a group of aberrations of same radial index n into 
the distortions, average the residual error over the 
central-symmetric circular area of the radius R0. 

Thus averaged residual error is shown in Fig. 4 as 
a function of the averaging area radius. The index n of 
the radial component is here a parameter.  Every curve 
is normalized by the corresponding Noll-index.  
Therefore the unit level in the figure corresponds to the 
value of error without a correction.  In this case a thin 
layer, 0.1H thick, is at the path’s center.  Two typical 
cases are considered: the phase corrector is in the 
receiving aperture plane (Fig. 4a) and at the center of 
a distorting layer image (Fig. 4b). It is seen that for all 
aberrations, except for the tilt group (n = 1), the 
correction zone in the former case is small and with its 
size approximately equal to one corrector radius.  The 
zone slightly widens as the radial component index 
decreases. In the latter case the correction zone 
significantly increases as compared to the first case 
(Fig. 4a) and the dependence of its size on the 
aberration number becomes more noticeable. 

 
a 

 
b 

FIG. 4.  Averaged, over circular area S0, residual 
error as a function of the radius of averaging zone R0 
for groups of aberrations with different radial 
component index n = 1 (1), n = 2 (2), n = 3 (3), and 
n = 4 (4).  The Layer thickness 2d = 0.1H.  The layer 
is in the middle of path, the corrector is in the 
receiving aperture plane (a) and at the center of the 
distorting layer image (b). 
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The effect of anisoplanatism  becomes stronger as 
the layer thickness increases and the size of the 
correction zone decreases.  The corresponding values of 
the isoplanatism zone size for three groups of 
aberrations, depending on the layer thickness 2d, are 
given in Table II.  The layer center and the corrector 
are in the middle of the path. 

 
 

TABLE II. Izoplanatism zone for different layer 
thickness (in the units of RC). 

 

Layer 
thickness, 2d 

Tilts 
(n = 1) 

Defocusing, 
astigmatism (n = 2) 

Coma 
(n = 3)

0.05H 468.3 28.1 14.7 
0.1H 234.6 14.7 7.4 
0.2H 118.2 7.2 3.7 
0.3H 79.8 4.9 2.6 
0.4H 60.8 3.8 2.0 
0.5H 49.7 3.1 1.7 

 

One of the possible ways to widen the 
isoplanatism zone is to use a new correction algorithm.  
In the next section we consider a modified algorithm 
when the corrector is adjusted to the mean, over some 
area, distortion. 

 

4. MODIFIED CORRECTION METHOD 

 

To widen the isoplanatism zone in the case of a 
thick distorting layer, other method of the corrector 
adjustment  may be proposed, for example, to the 
distortion averaged over some region.  In this case the 
central point of the image is corrected only 
incompletely, but the area, where the residual error is 
smaller than without a correction, becomes wider. 

Let us consider the central-symmetric area S0 
whose plane coincides with the object plane, with the  
center being on the optical axis (Fig. 1).  Let the  
phase distortions of waves, coming from the points 
within this area, be known.  The correction function 
u(rC) is chosen in accordance with the averaged over 
the area S0 distortion 

 

u(rC) = 
1
S0
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S0

ϕ(rC, ρ)d2ρ.  (13) 

 

The expression (13) is the correction phase in the 
modified correction method.  At S0 → 0 this method 
reduces to the classical one that uses for correction the 
central point. By substituting Eq. (13) into the 
expression for the residual error, Eq. (3), and making 
transformations similar to those in Sect. 3 we obtain 
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where R0 is the radius of region S0 over which the  
averaging is performed. 

Let us now elucidate how the size of the  
isoplanatism zone varies depending on the size of the 
zone of averaging used in the modified correction 
method. In so doing we use, as an example, the  tilt 
aberrations (Fig. 5).  The correction method is 
determined by the size of the averaging region R0.  The 
distorting layer with the thickness 2d = 0.4H is in the 
middle of the path.  At R0 = 0 (correction made using 
the central point) the isoplanatism zone is smaller than 
at R0 > 0, but the central point image is completely 
corrected.  The correction zone widens with increasing 
R0 but at the expense of the central point image 
deterioration. At an infinite growth of the averaging 
region the curve approaches the Noll-index line, that 
means the value of phase distortions in the case when 
no any correction is used. 

 
 

FIG. 5. Distribution of the error  over the object when 
using the modified correction method at different size 
of the averaging zone. R0 = 0 (1) (correction using the 
central point), R0 = 2RC (2), and R0 = 10RC (3). 

 
As can be seen from Fig. 5 the region where the  

residual error is smaller than the Noll index exceeds in 
size the averaging regions S0.  It can be shown that this 
situation takes place for all aberration types (n, m, l), 
at any radius of the averaging region R0.  
Consequently, the isoplanatism zone is larger than the 
region of the distortions averaging in the case of the 
summed error, Eq. (7) as well.  That means that an 
object whose size does not exceed the region of 
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averaging, S0, is entirely inside the isoplanatism zone 
and, as a result the quality of imaging of all its points 
improves. 

 

5. CONCLUSION 

 

Thus, if the corrector is positioned at the plane 
where the system images the distorting layer center the 
isoplanatism zone will be wider as compared to that in 
the case when the corrector is placed in the receiving 
aperture plane.  The increase of this zone size takes 
place for aberrations of any type.  Therefore, an 
adaptive imaging system with a displaced corrector 
provides a compensation for a larger number of 
aberrations. 

The size of the isoplanatism zone in the case of the 
corrector placed at the layer image center inversely 
decreases with the layer thickness increase.  For thick 
layers the region of a high-quality image is small and 
only slightly depends on the corrector position. 

To form the image of an extended object whose 
size exceeds the isoplanatism zone, a modified 
correction method is proposed.  When using this 
approach the region with lower residual rms error, as 
compared to that when no correction is used, is always 
wider than the region over which the distortions are 
averaged. 
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