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Experimental data on laser beam propagation in a coarsely dispersed aerosol 

are analyzed.  It is shown that there are optical thicknesses for which two scales of 

intensity fluctuations are observed.  The first scale is the diffraction correlation 

radius, which decreases monotonically with the increase of the optical thickness.  

The second scale is the quasi-isotropic radius, which is much smaller than the 

diffraction one. 
 

In case of laser beam propagation through a 
coarsely dispersed aerosol, significant multiple 
scattering is observed already for short paths.  
Experiments have shown that the intensity fluctuations 
of laser beams propagating in the coarsely dispersed 
aerosol have some specific features in comparation with 
the intensity fluctuations of laser beams propagating in 
randomly inhomogeneous media.  So, for example, a 
new regime of fluctuation damping during laser beam 
propagation in snowfalls was established by Borovoi et 
al.1  The model of light fluctuations in precipitation, 
based on the separation of the multiply scattered field 
into two components, namely, the component multiply 
diffracted by surfaces of particles and the reflected 
component, was proposed there. 

In the interpretation of the intensity fluctuations 
it was found that every component has different 
correlation radii, i.e., there are two scales of spatial 
correlation of the intensity functions in coarsely 
dispersed media.  The results of investigations of 
relative contributions of these fields to the intensity 
fluctuations are given in the present paper.  With this 
aim, the following experiment was pursued.  A model 
medium was sensed by a Gaussian beam of an LG$79 
laser.  A suspension of polystyrene particles in water 
was chosen as a medium.  The length of a cell was 
20 cm. Water in the cell was continuously mixed. 
Particle sizes varied from 100 μm to 1.2 mm. 

We were interested in the spatial correlation 
function for the intensity of radiation coming from the 
cell.  However, direct measurements of the correlation 
function face with two problems: high spatial 
resolution is required (the correlation radius of quasi-
isotropic radiation intensity can be of the order of the 
wavelength), and separation of one function into two 
components.  Therefore, we used the following 
experimental method.  The observation plane was at a 
certain distance z from the cell, and the measurements 
were performed not only within the laser beam, but 
also when the observation points were displaced from 

the beam axis, i.e., when we dealt only with the quasi-
isotropic radiation.  The diffraction of random waves was 
observed.  In this case, the transverse coherence function 
is inambiguously related with the coherence function of 
radiation in the plane z = 0 of interest for us2 
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r = r2 $ r1,   R = (r1 + r2)/2 . 

 

With the increase of z the coherence radius 
increases not only for the diffracted radiation, but also 
for the quasi-isotropic one. Thus, the following 
measurement procedure was chosen.  A linear array of 
photodiodes was placed inside the beam at different 
distancies from the cell (65, 90, 115, and 146 cm). It 
allowed us to record the radiation intensity in 100 
points (with a step of 50 μm) on the segment 5 mm in 
length perpendicular to the path.  An individual 
measurement included recording of the profile of a 
Gaussian beam that had passed through the cell filled 
by water without particles.  Then the particle 
suspension was prepared by continuous water mixing, 
and 200 realizations of random distribution of the 
radiation intensity in these points were recorded in the 
computer memory.  In addition, the linear array of 
photodiodes was displaced in the transverse direction at 
a distance of 3 mm and the second data array was 
recorded.  Preparing suspensions of different densities 
we obtained different optical thicknesses 1.7 < τ < 10.8 
(the radiation was focused with an additional lense to 
measure it).  In addition, the parameters of the 
Gaussian beam were specially determined.  Here, the 
complex amplitude 
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in the plane z = 0 had the following parameters: 
 

Rf = 1570 mm,   a0 = 0.314 mm. 

 

Statistical data processing was used to estimate 
two spatial functions, namely, the average intensity 
profile of the transmitted radiation I(R) and the 
correlation function for the intensity of quasi-isotropic 
radiation K(r) (with transverse displacement of the 
linear array of photodiodes).  An example of I(R) for 
optical thickness τ = 7.6 and z = 115 cm is shown in 
Fig. 1.  The measurements of K(r) with the linear array 
of photodiodes placed at the distance z = 146 cm from 
the cell are shown in Fig. 2 for two optical thicknesses 
τ = 2.2 and 8.2. 

 
 

FIG. 1.  Profile of the average radiation intensity with 
z = 115 cm and τ = 7.6: experiment (1), calculations by 
Eq. (7) with h = 0.36, Rg = 1.43 mm (2). 

 
FIG. 2.  Correlation functions for the intensity at 
z = 146 cm: τ = 2.2 (1) and 8.2 (2); squares are for 
the experiment. 

 

Let us analyze the dependences between the 
obtained functions and the optical thickness.  First let 
us consider broadening of the Gaussian beam with the 
increase of τ and z.  With this aim, let us use Eq. (1) 
and determine the coherence function in the plane 
z = 0.  First we restrict ourselves by the coherence 
function of the diffracted radiation, because we 
consider I(R) for angles characteristic of diffraction of 

the most unperturbed beam.  Second, though it is 
possible to determine this coherence function as a 
function of particle sizes more adequately, we restrict 
ourselves by a simpler model function, namely, 
Gaussian one.  It is clear that the first assumption 
imposes limitations on τ from above and the second 
assumption $ from below.  Thus, we take 
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ρ is the coherence radius of the diffracted beam in the 
plane z = 0.  Then in accordance with Ref. 2, the 
average intensity at the distance z is 
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Experimental profiles I(R), as can be seen from 
Fig. 1, differ from that described by Eq. (5), namely, 
they can be represented as 

 

I(R) = I0 [h + exp ($R2/R2
g)].  (7) 

 

Here, h has a simple sense: it is the ratio of the ray 
intensity in the forward direction for quasi-isotropic 
radiation to the corresponding intensity of the 
diffracted beam.  Thus, considering that the second 
term in Eq. (7) describes function (5), one can set the 
experimental beam width Rg equal to the diffracted 

one: Rg = a(z)/ 2 and using Eqs. (4) and (6) 
calculate ρ. 

Such calculations were done for the entire set of 
our data. The dependences of the coherence radius on 
the optical thickness are shown in Fig. 3 and of the 
parameter h $ in Fig. 4.  From Fig. 3 it can be seen 
that ρ decreases monotonically with the increase of τ. 
The smoothed solid curve shows the dependence 

 

ρ = b/τ ,  (8) 
 

where b = 1.21 mm. 
From Fig. 4 one can see that the contribution of 

the quasi-isotropic radiation first increases and near 
τ = 10.0 the rate of increase slows down.  The joint 
effect of two factors, namely, the decrease of the 
coherence radius of the diffracted beam and the increase 
of the quasi-isotropic contribution, whose coherence 
radius is much smaller than the diffraction one, leads to 
damping of fluctuations.  We emphasize that the 
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optical thickness at which this occurs is τ = 4.0 and 
probably depends insignificantly on the scatterer sizes, 
for example, in Ref. 1 τ = 5.0 for the snowfalls. 

 
FIG. 3.  Dependence between the coherence radius of 
the diffracted beam and the optical thickness (squares 
are for the experiment). 

 
 

FIG. 4.  Dependence between the ratio h and the 
optical thickness τ (squares are for the experiment). 
 

Now we consider the correlation functions K(r) 
measured in the scattered radiation.  The correlation 
radius is defined as a parameter of Gaussian curve Rk 
(shown by the solid curve in Fig. 3) 

 

K(r) = exp ($r2/R2
k) . (9) 

 
The experimental data shown in Fig. 5 indicate the 

significant increase of the correlation radius with the 
increase of the optical thickness. 

The data shown in Figs. 2 and 5 can be interpreted 
in the following way.  The speckle structure observed 
experimentally is caused only by the refracted field.  
Together with that, regions of the scattering medium, 
which have sizes of the order of the coherence radius in 
the diffracted field act as efficient incoherent sources.  By 
the van Zittert$Zernike theorem, such sources form the 
speckle pattern with the angular correlation radius 
θ ∼ λ/ρ. 

In Fig. 5 the solid curve was calculated for this 
model with the coherence radius given by Eq. (8). 
Because the experimental and calculated data agree 
 

fairly well in Fig. 5, then, on one side, this supports 
the above-given interpretation of the speckle structure 
and on the other side, this gives a new method for 
measuring the coherence radius in the multiply 
diffracted field.  Such method is efficient for large 
optical thicknesses of the medium, when the previous 
method based on broadening of the beam (see Fig. 1) 
becomes inefficient. 

 
FIG. 5.  Dependence between the correlation radius of 
the scattered beam and the optical thickness for 
z = 146 cm (squares are for the experiment). 

 
As a whole, the following conclusions can be 

drawn based on the results of our experiment. There is 
the range of optical thicknesses, for which the intensity 
fluctuations of laser beams propagating in the coarsely 
dispersed aerosol have two spatial scales.  The 
diffraction correlation radius, that decreases 
monotonically with the increase of τ, and the quasi-
isotropic correlation radius, which is much smaller then 
the diffraction one, correspond to this range.  
Moreover, the quasi-isotropic field can be neglected for 
the transmitted radiation when τ < 3.0, but its 
contribution to the fluctuations becomes noticeable 
already at τ = 4.0.  As to the question to which optical 
thicknesses there is a great difference between this two 
scales, the sizes of scatterers, the beam parameters, and 
the path length as well should be taken in to account. 
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